Physics
Physics is the study of matter, energy, motion, and fundamental forces, aiming to explain the behavior and structure of the universe through observation and theory.
Physics is the study of matter, energy, motion, and fundamental forces, aiming to explain the behavior and structure of the universe through observation and theory.
Symbol | Quantity | Value | Unit | Dimension |
---|---|---|---|---|
$c$ | Speed of light in vacuum | $3 \times 10^{8}$ $\text{(exact) } 299,792,458$ | $\mathrm{m \, s^{-1}}$ | $\mathrm{LT^{-1}}$ |
$h$ | Planck constant | $6.626 \times 10^{-34}$ | $\mathrm{J \, s}$ | $\mathrm{ML^{2}T^{-1}}$ |
$hc$ | Photon Energy constant | $1242$ | $\mathrm{eV \cdot nm}$ $\mathrm{MeV \cdot fm}$ | $\mathrm{ML^{2}T^{-1}}$ |
$\hbar = \dfrac{h}{2\pi}$ | Reduced Planck constant | $1.055 \times 10^{-34}$ | $\mathrm{J \, s}$ | $\mathrm{ML^{2}T^{-1}}$ |
$\mu_0$ | Vacuum Magnetic permeability | $4\pi \times 10^{-7}$ | $\mathrm{N \, A^{-2}}$ | $\mathrm{MLT^{-2}I^{-2}}$ |
$\varepsilon_0 = \dfrac{1}{\mu_0\,c^2}$ | Vacuum Electric permittivity | $8.854 \times 10^{-12}$ | $\mathrm{F \, m^{-1}}$ | $\mathrm{M^{-1}L^{-3}T^{4}I^{2}}$ |
$Z_0 = \dfrac{1}{\varepsilon_0}$ | Characteristic impedance of vacuum | $3.77 \times 10^{2}$ | $\mathrm{\Omega}$ | $\mathrm{ML^{2}T^{-3}I^{-2}}$ |
$G$ | Newtonian constant of gravitation | $6.67 \times 10^{-11}$ | $\mathrm{m^{3} \, kg^{-1} \, s^{-2}}$ | $\mathrm{L^{3}M^{-1}T^{-2}}$ |
$R = \dfrac{PV}{nT}$ | Molar / Universal Gas constant | $8.314 \approx 25/3$ $0.082 \approx 1/12$ $62.36$ | $\mathrm{J \, mol^{-1} \, K^{-1}}$ $\mathrm{L \,atm \, mol^{-1} \, K^{-1}}$ $\mathrm{L \,torr \, mol^{-1} \, K^{-1}}$ | $\mathrm{ML^{2}T^{-2}K^{-1}}$ |
$N_A$ | Avagadro constant | $6.022 \times 10^{-23}$ | $\mathrm{mol^{-1}}$ | $\mathrm{ML^{2}T^{-2}K^{-1}}$ |
$N_A\,h$ | Molar Planck constant | $4 \times 10^{-10}$ | $\mathrm{J \, s \, mol^{-1}}$ | $\mathrm{ML^{2}T^{-2}K^{-1}}$ |
$k_B = \dfrac{R}{N_A}$ | Boltzmann constant | $1.38 \times 10^{-23}$ | $\mathrm{J \, K^{-1}}$ | $\mathrm{ML^{2}T^{-2}K^{-1}}$ |
$\sigma$ | StefanāBoltzmann constant | $5.67 \times 10^{-8}$ | $\mathrm{W \, m^{-2} \, K^{-4}}$ | $\mathrm{MT^{-3}K^{-4}}$ |
$\mathrm{F} = N_A\,e$ | Faraday constant | $9.65 \times 10^{4}$ | $\mathrm{C \, mol^{-1}}$ | $\mathrm{MT^{-3}K^{-4}}$ |
$e^-$ | Elementary Charge | $1.602 \times 10^{-19}$ | $\mathrm{C}$ | $\mathrm{TI}$ |
$m_e$ | Electron mass | $9.11 \times 10^{-31}$ | $\mathrm{kg}$ | $\mathrm{M}$ |
$m_p$ | Proton mass | $1.6726 \times 10^{-27}$ | $\mathrm{kg}$ | $\mathrm{M}$ |
$m_n$ | Neutron mass | $1.6749 \times 10^{-27}$ | $\mathrm{kg}$ | $\mathrm{M}$ |
$m_p / m_e$ | Proton-to-electron mass ratio | $1.84 \times 10^{3}$ | $-$ | Dimensionless |
$m_{\mu}$ | Muon mass | $1.88 \times 10^{-28}$ | $\mathrm{kg}$ | $\mathrm{M}$ |
$m_{\tau}$ | Tau mass | $3.16 \times 10^{-27}$ | $\mathrm{kg}$ | $\mathrm{M}$ |
$\alpha = \dfrac{e^2}{2\epsilon_0hc}$ | Fine Structure constant | $7.297 \times 10^{-3} \approx \dfrac{1}{137}$ | $-$ | Dimensionless |
$\alpha^{-1}$ | Inverse fine structure constant | $137.036$ | $-$ | Dimensionless |
$m_u = \dfrac{m({}^{12}\mathrm{C})}{N_A}$ | Atomic mass unit | $1.66 \times 10^{-27}$ | $\mathrm{kg}$ | $\mathrm{M}$ |
$\mu_B = \dfrac{he}{4\pi m_e}$ | Bohr Magneton | $9.274 \times 10^{-24}$ | $\mathrm{J \, T^{-1}}$ | $\mathrm{L^{2}IT^{-2}}$ |
$R_{\infty} = \dfrac{m_e e^4}{8\epsilon_0 h^3c}$ | Rydberg constant | $1.10 \times 10^{7}$ | $\mathrm{m^{-1}}$ | $\mathrm{L^{-1}}$ |
$R_{\infty}\,hc$ | Rydberg Unit of Energy | $2.18 \times 10^{-18}$ $13.6$ | $\mathrm{J}$ $\mathrm{eV}$ | $\mathrm{L^{-1}}$ |
$a_0 = \dfrac{h\epsilon_0}{\pi e^2 m_e}$ | Bohr radius | $5.29 \times 10^{-11}$ | $\mathrm{m}$ | $\mathrm{L}$ |
$b$ | Wien wavelength displacement constant | $2.90 \times 10^{-3}$ | $\mathrm{m \, K}$ | $\mathrm{LK}$ |
$b^\prime$ | Wien frequency displacement law constant | $5.88 \times 10^{10}$ | $\mathrm{Hz \, K^{-1}}$ | $\mathrm{T^{-1}K^{-1}}$ |
$b_{\text{entropy}}$ | Wien entropy displacement law constant | $3.00 \times 10^{-3}$ | $\mathrm{m \, K}$ | $\mathrm{LK}$ |
$r_e$ | Classical electron radius | $2.82 \times 10^{-15}$ | $\mathrm{m}$ | $\mathrm{L}$ |
$E_{\text{ion}}$ | Ionization Energy of hydrogen | $2.18 \times 10^{-18}$ | $\mathrm{J}$ | $\mathrm{ML^{2}T^{-2}}$ |
Symbol | Quantity | Value | Unit | Dimension |
---|---|---|---|---|
$V_{\text{molar}} = \dfrac{RT}{P}$ | Molar Volume of Ideal Gas at: | $\text{See Below}$ | $-$ | $-$ |
(normal) $V_{\text{STP}}$ | $T = 0^{\circ}\mathrm{\,C} = 273.15\mathrm{\,K}\:,\quad P = 101.325\mathrm{\,kPa} = 1\mathrm{\,atm}$ | $22.4$ | $\mathrm{L}$ | $L^{3}$ |
(new) $V_{\text{STP}}$ | $T = 0^{\circ}\mathrm{\,C} = 273.15\mathrm{\,K}\:,\quad P = 100\mathrm{\,kPa} = 0.987\mathrm{\,atm}$ | $22.7$ | $\mathrm{L}$ | $L^{3}$ |
$V_{\text{NTP}}$ | $T = 20^{\circ}\mathrm{\,C} = 293.15\mathrm{\,K}\:,\quad P = 101.325\mathrm{\,kPa} = 1\mathrm{\,atm}$ | $24.0$ | $\mathrm{L}$ | $L^{3}$ |
$V_{\text{SATP}}$ | $T = 25^{\circ}\mathrm{\,C} = 298.15\mathrm{\,K}\:,\quad P = 101.325\mathrm{\,kPa} = 1\mathrm{\,atm}$ | $24.5$ | $\mathrm{L}$ | $L^{3}$ |
Symbol | Quantity | Value | Unit | Dimension |
---|---|---|---|---|
$g_{\text{earth}}$ | Earth’s acceleration due to gravity | $9.81$ | $\mathrm{m \, s^{-2}}$ | $\mathrm{L^{3}M^{-1}T^{-2}}$ |
Note: This page includes several unconventional approximations, often tailored for exams where calculators arenāt permitted.
Prefix | Symbol | Meaning | Prefix | Symbol | Meaning |
---|---|---|---|---|---|
quetta | $Q$ | $10^{30}$ | quecto | $q$ | $10^{-30}$ |
ronna | $R$ | $10^{27}$ | ronto | $r$ | $10^{-27}$ |
yotta | $Y$ | $10^{24}$ | yocto | $y$ | $10^{-24}$ |
zetta | $Z$ | $10^{21}$ | zepto | $z$ | $10^{-21}$ |
exa | $E$ | $10^{18}$ | atto | $a$ | $10^{-18}$ |
peta | $P$ | $10^{15}$ | femto | $f$ | $10^{-15}$ |
tera | $T$ | $10^{12}$ | pico | $p$ | $10^{-12}$ |
giga | $G$ | $10^{9}$ | nano | $n$ | $10^{-9}$ |
mega | $M$ | $10^{6}$ | micro | $\mu$ | $10^{-6}$ |
kilo | $k$ | $10^{3}$ | milli | $m$ | $10^{-3}$ |
hecto | $h$ | $10^{2}$ | centi | $c$ | $10^{-2}$ |
deka | $da$ | $10^{1}$ | deci | $d$ | $10^{-1}$ |
(base unit) | - | $10^{0}$ | (base unit) | - | $10^{0}$ |
$\begin{aligned} 1 \:m &= 39.37( \approx 243/8) \:in &&= 3.28( \approx 105/32) \:ft &&= 1.094( \approx 11/10) \:yd \\ 1 \:in &= 2.54 \:cm &&= 1/12 \:ft \\ 1 \:ft &= 12 \:in &&= 0.3048 \:m \\ 1 \:km &= 0.6214 \:mi &&= 3281 \:ft \\ 1 \:mi &= 5280 \:ft &&= 1.609 \:km \\ 1 \:\text{light-year} &= 9.461 \times 10^{12} \:km \end{aligned}$
$\begin{aligned} \text{Kelvin, } & K &&= {}^\circ C + 273.15 \\ \text{Celsius, } & {}^\circ C &&= K - 273.15 &&= \dfrac{5}{9}({}^\circ F - 32) \\ \text{Fahrenheit, } & {}^\circ F &&= \dfrac{9}{5}{}^\circ C + 32 \\ \text{Rankine, } & {}^\circ R &&= {}^\circ F + 459.67&&= \dfrac{5}{9}K \end{aligned}$
$\begin{aligned} km/h &= \dfrac{5}{18} \:m/s , & m/s &= \dfrac{18}{5} \:km/h \\ mi/h &= 0.447 \:m/s , &ft/s &= 0.305 \:m/s \\ \end{aligned}$
$\begin{aligned} 1 \:kg &= 2.204 \:lb &&= 35.274 \:oz \\ 1 \:lb &= 0.4536 \:kg &&= 16 \:oz \\ 1 \:oz &= 0.0283 \:kg \\ 1 \:amu &= 1.66 \times 10^{-27} \:kg \end{aligned}$
$\begin{aligned} 1 \:N &= 10^5 \:dyn &&= 0.2248 \:lbf \\ 1 \:dyn &= 10^{-5} \:N \\ 1 \:lbf &= 4.448 \:N \end{aligned}$
$\begin{aligned} 1 \:m^2 &= 10.764 \:ft^2 &&= 1550 \:in^2 \\ 1 \:in^2 &= 6.45 \:cm^2 \\ 1 \:acre &= 4047 \:m^2 &&= 43560 \:ft^2 \\ 1 \:hectare &= 10^4 \:m^2 \\ 1 \:mi^2 &= 2.59 \:km^2 &&= 640 \:acres \end{aligned}$
$\begin{aligned} 1 \:m^3 &= 10^3 \:L &&= 35.315 \:ft^3 &&= 264.2 \:gal \\ 1 \:cm^3 &= 1 \:mL &&= 0.061 \:in^3 \\ 1 \:L &= 10^3 \:cm^3 &&= 0.264 \:gal \\ 1 \:ft^3 &= 7.48 \:gal &&= 28.317 \:L \\ 1 \:gal &= 3.785 \:L &&= 231 \:in^3 \end{aligned}$
$\begin{aligned} 1 \:kPa &= 10^3 \:N/m^2 &&= 10^{-2} \:bar &&= 9.87 \times 10^{-3} \:atm \\ 1 \:atm &= 101.325 \:kPa &&= 1.013 \:bar &&= 760 \:\text{mmHg (Torr)} \\ 1 \:bar &= 10^2 \:kPa &&= 14.5 \:psi \\ 1 \:psi &= 6.895 \:kPa \\ 1 \:\text{Torr} &= 0.133 \:Pa && (\vec{g} = 9.80665 \:m/s^2) \end{aligned}$
$\begin{aligned} 1 \:J &= 624.15 \times 10^{10} \:MeV &&= 10^7 \:erg \\ 1 \:eV &= 1.602 \times 10^{-19} \:J \\ 1 \:cal &= 4.184 \:J \\ 1 \:Btu &= 1055 \:J \\ 1 \:\text{kWh} &= 3.6 \times 10^6 \:J &&= 3412 \:Btu \end{aligned}$
$\begin{aligned} 1 \:W &= 1 \:J/s &&= 0.7376 \:ft \cdot lbf/s \\ 1 \:hp &= 745.7 \:W \end{aligned}$
$\begin{aligned} 1^\circ \text{ (degree)} &= \dfrac{\pi}{180} \:\text{rad} &&= 0.01745 \:\text{rad} \\ 1^\circ &= 60'\text{ (minutes)} \\ 1' &= 60''\text{ (seconds)} \\ 1 \:\text{rad} &= \dfrac{180^\circ}{\pi} \: &&= 57.30^\circ \\ 1 \:\text{revolution} &= 360 \:{}^\circ &&= 2 \pi \:\text{rad} \\ 1 \:\text{rev/min (rpm)} &= 0.1047\:\text{rad/s} \end{aligned}$
Quantity | Name | Symbol | Other Units | Base Units |
---|---|---|---|---|
Plane Angle | Radian | $\text{rad}$ | $\dfrac{\text{m}}{\text{m}}$ | |
Solid Angle | Steradian | $\text{sr}$ | $\dfrac{\text{m}^2}{\text{m}^2}$ | |
Frequency | Hertz | $\text{Hz}$ | $\dfrac{1}{\text{s}}$ | |
Force | Newton Dyne | $\text{N}$ $\text{dyne}$ | $\dfrac{\text{kg} \cdot \text{m}}{\text{s}^2}$ $\dfrac{\text{g} \cdot \text{cm}}{\text{s}^2}$ | |
Pressure, Stress | Pascal Barye | $\text{Pa}$ $\text{Ba}$ | $\dfrac{\text{N}}{\text{m}^2}$ $\dfrac{\text{dyne}}{\text{cm}^2}$ | $\dfrac{\text{kg}}{\text{m} \cdot \text{s}^2}$ |
Energy, Work, Heat | Joule Erg | $\text{J}$ $\text{erg}$ | $\text{N} \cdot \text{m}$ $\text{dyne} \cdot \text{cm}$ | $\dfrac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$ $\dfrac{\text{g} \cdot \text{cm}^2}{\text{s}^2}$ |
Power, Heat Flow | Watt | $\text{W}$ | $\dfrac{\text{J}}{\text{s}}$ | $\dfrac{\text{kg} \cdot \text{m}^2}{\text{s}^3}$ |
Electric Charge | Coulomb | $\text{C}$ | $\text{A} \cdot \text{s}$ | |
Electric Potential | Volt | $\text{V}$ | $\dfrac{\text{W}}{\text{A}}$ | $\dfrac{\text{kg} \cdot \text{m}^2}{\text{A} \cdot \text{s}^3}$ |
Capacitance | Farad | $\text{F}$ | $\dfrac{\text{C}}{\text{V}}$ | $\dfrac{\text{A}^2 \cdot \text{s}^4}{\text{kg} \cdot \text{m}^2}$ |
Resistance | Ohm | $\Omega$ | $\dfrac{\text{V}}{\text{A}}$ | $\dfrac{\text{kg} \cdot \text{m}^2}{\text{A}^2 \cdot \text{s}^3}$ |
Conductance | Siemens | $\text{S}$ | $\dfrac{\text{A}}{\text{V}}$ | $\dfrac{\text{A}^2 \cdot \text{s}^3}{\text{kg} \cdot \text{m}^2}$ |
Magnetic Flux | Weber | $\text{Wb}$ | $\text{V} \cdot \text{s}$ | $\dfrac{\text{kg} \cdot \text{m}^2}{\text{A} \cdot \text{s}^2}$ |
Magnetic Flux Density | Tesla | $\text{T}$ | $\dfrac{\text{Wb}}{\text{m}^2}$ | $\dfrac{\text{kg}}{\text{A} \cdot \text{s}^2}$ |
Inductance | Henry | $\text{H}$ | $\dfrac{\text{Wb}}{\text{A}}$ | $\dfrac{\text{kg} \cdot \text{m}^2}{\text{A}^2 \cdot \text{s}^2}$ |
Celsius Temperature | Degree Celsius | ${}^{\circ} C$ | $K$ | |
Luminous Flux | Lumen | $\text{lm}$ | $\text{cd} \cdot \text{sr}$ | $\dfrac{\text{cd} \cdot \text{m}^2}{\text{m}^2}$ |
Illuminance | Lux | $\text{lx}$ | $\dfrac{\text{lm}}{\text{m}^2}$ | $\dfrac{\text{cd}}{\text{m}^2}$ |
Activity | Becquerel | $\text{Bq}$ | $\dfrac{1}{\text{s}}$ |
Unit | Symbol | Scientist | Quantity |
---|---|---|---|
Becquerel | $\text{Bq}$ | Henri Becquerel | Activity |
Bel* | $\text{B}$ | Alexander Graham Bell | Level |
Coulomb | $\text{C}$ | Charles-Augustin Coulomb | Electric Charge |
Degree Celsius | ${}^{\circ} \text{C}$ | Anders Celsius | Celsius Temperature |
Dalton* | $\text{Da}$ | John Dalton | Mass |
Farad | $\text{F}$ | Michael Faraday | Capacitance |
Gray | $\text{Gy}$ | Louis Gray | Absorbed Dose |
Henry | $\text{H}$ | Joseph Henry | Inductance |
Hertz | $\text{Hz}$ | Heinrich Hertz | Frequency |
Joule | $\text{J}$ | James Joule | Energy, Work, Heat |
Kelvin | $K$ | William Thomson, Lord Kelvin | Temperature |
Newton | $\text{N}$ | Isaac Newton | Force |
Ohm | $\Omega$ | Georg Ohm | Resistance |
Pascal | $\text{Pa}$ | Blaise Pascal | Pressure, Stress |
Poise | $\text{P}$ | Jean Poiseuille | Dynamic Viscosity |
Siemens | $\text{S}$ | Werner von Siemens | Conductance |
Stokes | $\text{St}$ | George Stokes | Kinematic Viscosity |
Tesla | $\text{T}$ | Nikola Tesla | Magnetic Field |
Volt | $\text{V}$ | Alessandro Volta | Electric Potential |
Watt | $\text{W}$ | James Watt | Power, Heat Flow |
Weber | $\text{Wb}$ | Wilhelm Weber | Magnetic Flux |
Whenever the flux of magnetic field through the area bounded by a closed conducting loop changes, and emf in produced in the loop.
EMF induced $(\mathcal{E})$:
$\mathcal{E} = -\dfrac{d\Phi}{dt}$
Flux ($\Phi$):
$\Phi = \int{\vec{B}\cdot \vec{dS}} = BA \cos \theta$
$\Phi = Li$
Induced EMF $(\mathcal{E})$ in coil due to its own current $I$:
$\mathcal{E} = -L \dfrac{di}{dt}$
$L = \mu_0\:n^2Al$
$n$: Turns per unit length,
$A$: Cross-sectional area,
$l$: Length of solenoid.
At $t = \tau$,
Growth: $i = i_0 (1-\dfrac{1}{e}) = 0.63 i_0$
Decay: $i = i_0 \dfrac{1}{e} = 0.37 i_0$
$B = \mu_0\:ni$
$u = \dfrac{B^2}{2 \mu_0}$
Mutual Inductance $(M)$:
$M = \dfrac{\mu_0 N_1 N_2 A}{l}$
Induced EMF $\mathcal{E}_2$ in $\text{coil}_2$ due to change in current $i_1$ in $\text{coil}_1$:
$\mathcal{E}_2 = -M \dfrac{di_1}{dt}$