Special Values

Common & Sub-Angle Values

$\text{Radian}$$\text{Degree}$$\sin$$\cos$$\tan$$\cot$$\sec$$\csc$
$0$$0^{\circ}$$0$$1$$0$$\infty$$1$$\infty$
$\dfrac{\pi}{24}$$7.5^\circ$$\dfrac{1}{2}\sqrt{2 - \sqrt{2 + \sqrt{3}}}$$\dfrac{1}{2}\sqrt{2 + \sqrt{2 + \sqrt{3}}}$$\sqrt{6} - \sqrt{3} + \sqrt{2} - 2$$\sqrt{6} + \sqrt{3} + \sqrt{2} + 2$$-$$-$
$\dfrac{\pi}{12}$$15^\circ$$\dfrac{\sqrt{2}}{4} (\sqrt{3} - 1)$$\dfrac{\sqrt{2}}{4} (\sqrt{3} + 1)$$2 - \sqrt{3}$$2 + \sqrt{3}$$\sqrt{2}(\sqrt{3} - 1)$$\sqrt{2}(\sqrt{3} + 1)$
$\dfrac{\pi}{10}$$18^\circ$$\dfrac{\sqrt{5} - 1}{4}$$\dfrac{\sqrt{10 + 2 \sqrt{5}}}{4}$$\dfrac{\sqrt{25 - 10 \sqrt{5}}}{5}$$\dfrac{\sqrt{5 + 2 \sqrt{5}}}{5}$$\dfrac{\sqrt{50 - 10 \sqrt{5}}}{5}$$1 + \sqrt{5}$
$\dfrac{\pi}{8}$$22.5^\circ$$\dfrac{\sqrt{2 - \sqrt{2}}}{2}$$\dfrac{\sqrt{2 + \sqrt{2}}}{2}$$\sqrt{2} - 1$$\sqrt{2} + 1$$\sqrt{4 - 2 \sqrt{2}}$$\sqrt{4 + 2 \sqrt{2}}$
$\dfrac{\pi}{6}$$30^\circ$$\dfrac{1}{2}$$\dfrac{\sqrt{3}}{2}$$\dfrac{1}{\sqrt{3}}$$\sqrt{3}$$\dfrac{2}{\sqrt{3}}$$2$
$\dfrac{\pi}{5}$$36^\circ$$\dfrac{\sqrt{10 - 2 \sqrt{5}}}{4}$$\dfrac{1 + \sqrt{5}}{4}$$\dfrac{\sqrt{5 - 2 \sqrt{5}}}{5}$$\dfrac{\sqrt{25 + 10 \sqrt{5}}}{5}$$\dfrac{\sqrt{5} - 1}{2}$$\dfrac{\sqrt{50 + 10 \sqrt{5}}}{5}$
$\dfrac{\pi}{4}$$45^\circ$$\dfrac{\sqrt{2}}{2}$$\dfrac{\sqrt{2}}{2}$$1$$1$$\sqrt{2}$$\sqrt{2}$
$\dfrac{3\pi}{10}$$54^\circ$$\dfrac{1 + \sqrt{5}}{4}$$\dfrac{\sqrt{10 - 2 \sqrt{5}}}{4}$$\dfrac{\sqrt{25 + 10 \sqrt{5}}}{5}$$\sqrt{5 - 2 \sqrt{5}}$$\dfrac{\sqrt{50 + 10 \sqrt{5}}}{5}$$\sqrt{5} - 1$
$\dfrac{\pi}{3}$$60^\circ$$\dfrac{\sqrt{3}}{2}$$\dfrac{1}{2}$$\sqrt{3}$$\dfrac{1}{\sqrt{3}}$$2$$\dfrac{2}{\sqrt{3}}$
$\dfrac{3\pi}{8}$$67.5^\circ$$\dfrac{\sqrt{2 + \sqrt{2}}}{2}$$\dfrac{\sqrt{2 - \sqrt{2}}}{2}$$\sqrt{2} + 1$$\sqrt{2} - 1$$4 + 2 \sqrt{2}$$4 - 2 \sqrt{2}$
$\dfrac{2\pi}{5}$$72^\circ$$\dfrac{\sqrt{10 + 2 \sqrt{5}}}{4}$$\dfrac{\sqrt{5} - 1}{4}$$\sqrt{5 + 2 \sqrt{5}}$$\dfrac{\sqrt{25 - 10 \sqrt{5}}}{5}$$1 + \sqrt{5}$$\dfrac{\sqrt{50 - 10 \sqrt{5}}}{5}$
$\dfrac{5\pi}{12}$$75^\circ$$\dfrac{\sqrt{2}}{4} (\sqrt{3} + 1)$$\dfrac{\sqrt{2}}{4} (\sqrt{3} - 1)$$2 + \sqrt{3}$$2 - \sqrt{3}$$\sqrt{2}(\sqrt{3} + 1)$$\sqrt{2}(\sqrt{3} - 1)$
$\dfrac{\pi}{1}$$90^\circ$$1$$0$$\infty$$0$$\infty$$1$

Sources