Subsections of Mathematics

Subsections of Constants & Approximations

Approximations

Irrational

ExactApproximation
21.41417129970
31.73226153118
π3.14227355113
π29.8749535536
π331.006331
e2.72197873227211001
e27.39223
e320.085520
ϕ1+521.6181382113

Subsections of Trigonometry

Ratios and Angles

Basic Formulae


sin2θ+cos2θ=1tan2θsec2θ=1csc2θcot2θ=1

sinx=cos(90x)=1cscxcosx=sin(90x)=1secxtanx=cot(90x)=sinxcosx=1cotx


A system of rectangular coordinate axes divides a plane into four quadrants. An angle θ lies in one and only one of these quadrants.
The change and sign of the trigonometric ratios in the various quadrants are shown in Fig-1 below.

Fig-1


Sum and Difference

Two Angle

sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosBsinAsinB

tan(A±B)=tanA±tanB1tanAtanBcot(A±B)=cotAcotB1cotB±cotA

sin(A+B)sin(AB)=sin2Asin2B=cos2Bcos2Acos(A+B)cos(AB)=cos2Asin2B=cos2Bsin2A

Three Angle

sin(A+B+C)=sinAcosBcosC+cosAsinBcosC+cosAcosBsinCsinAsinBsinC=cosAcosBcosC(tanA+tanB+tanCtanAtanBtanC)

cos(A+B+C)=cosAcosBcosCsinAsinBcosCsinAcosBsinCcosAsinBsinC=cosAcosBcosC(1tanAtanBtanBtanCtanCtanA)

tan(A+B+C)=tanA+tanB+tanCtanAtanBtanC1tanAtanBtanBtanCtanCtanAcot(A+B+C)=cotA+cotB+cotCcotAcotBcotC1cotAcotBcotBcotCcotCcotA

General


S0=1S1=ixi=itanθiS2=i<jxixj=i<jtanθitanθjS3=i<j<kxixjxk=i<j<ktanθitanθjtanθk

Then,

tan(θ1+θ2++θn)=S1S3+S5S7+1S2+S4S6+sec(θ1+θ2++θn)=secθ1secθ2secθnS0S2+S4csc(θ1+θ2++θn)=secθ1secθ2secθnS1S3+S5


cos2rθcos2r+1θcos2r+2θcos2nθ=sin2n+1θ2nr+1sin2rθ

sin(α)+sin(α+β)+sin(α+2β)++sin(α+nβ)=sin((n+1)β2)sin(β2)sin(α+nβ2)cos(α)+cos(α+β)+cos(α+2β)++cos(α+nβ)=sin((n+1)β2)sin(β2)cos(α+nβ2)

1+2cosθ+2cos(2θ)+2cos(3θ)++2cos(nθ)=sin((n+12)θ)sin(θ2)

Generally not true! only for common values of ‘θ’. USE WITH CAUTION

sinθ1±sinθ2+sinθ3++sinθncosθ1±cosθ2+cosθ3++cosθn=tanθ1±θ2+θ3++θnn

Product to Sum

2sinAcosB=sin(A+B)+sin(AB)2cosAsinB=sin(A+B)sin(AB)2cosAcosB=cos(A+B)+cos(AB)2sinAsinB=cos(AB)cos(A+B)

Sum to Product

sinC+sinD=2sinC+D2cosCD2sinCsinD=2cosC+D2sinCD2cosC+cosD=2cosC+D2cosCD2cosCcosD=2sinC+D2sinCD2

Multiple Angle

Two/Three Angle

sin2θ=2sinθcosθ=2tanθ1+tan2θ

cos2θ=cos2θsin2θ=2cos2θ1=12sin2θ=1tan2θ1+tan2θ

tan2θ=2tanθ1tan2θ

sin3θ=3sinθ4sin3θ=4sin(60θ)sin(θ)sin(60+θ)

cos3θ=4cos3θ3cosθ=4cos(60θ)cos(θ)cos(60+θ)

tan3θ=3tanθtan3θ13tan2θ=tan(60θ)tan(θ)tan(60+θ)

Multi(>3) Angle

sin4θ=4sinθcos3θ4cosθsin3θcos4θ=8cos4θ8cos2θ+1tan4θ=4tanθ4tan3θ16tan2θ+tan4θsin5θ=16sin5θ20sin3θ+5sinθcos5θ=16cos5θ20cos3θ+5cosθ

Half Angle

sinθ2=sgn(sinθ2)1cosθ2cosθ2=sgn(cosθ2)1+cosθ2

tanθ2=1cosθsinθ=sinθ1+cosθ=cscθcotθ=tanθ1+secθ=sgn(sinθ)1cosθ1+cosθ

Special Cases

tanη±θ2=sinη±sinθcosη+cosθ

tan(θ2+π4)=secθ+tanθ
1sinθ1+sinθ=|1tanθ21+tanθ2|

Power Reduction

Sine (sinnθ)Cosine (cosnθ)Combined (sinnθcosmθ)
sin2θ=1cos2θ2cos2θ=1+cos2θ2sin2θcos2θ=1cos4θ8
sin3θ=3sinθsin3θ4cos3θ=3cosθ+cos3θ4sin3θcos3θ=3sin2θsin6θ32
sin4θ=34cos2θ+cos4θ8cos4θ=3+4cos2θ+cos4θ8sin4θcos4θ=34cos4θ+cos8θ128
sin5θ=10sinθ5sin3θ+sin5θ16cos5θ=10cosθ+5cos3θ+cos5θ16sin5θcos5θ=10sin2θ5sin6θ+sin10θ512

Special Cases

If A+B+C=180=π , then

sin2A+sin2B+sin2C=4sinAsinBsinCsin2A+sin2Bsin2C=4cosAcosBsinCcos2A+cos2B+cos2C=14cosAcosBcosCcos2A+cos2Bcos2C=14sinAsinBcosCsinA+sinB+sinC=4cosA2cosB2cosC2sinA+sinBsinC=4sinA2sinB2cosC2cosA+cosB+cosC=1+4sinA2sinB2sinC2cosA+cosBcosC=1+4cosA2cosB2sinC2sin2A+sin2Bsin2C=2sinAsinBcosCcos2A+cos2Bcos2C=12sinAsinBcosCcos2A+cos2B+cos2C=12cosAcosBcosCsin2A+sin2B+sin2C=2+2cosAcosBcosCtanA+tanB+tanC=tanAtanBtanCcotBcotC+cotCcotA+cotAcosB=1tanB2tanC2+tanC2tanA2+tanA2.tanB2=1cotA2+cotB2+cotC2=cotA2cotB2cotC2

Series Expansion

sinx=xx33!+x55!x77!+=n=0(1)nx2n+1(2n+1)!cosx=1x22!+x44!x66!+=n=0(1)nx2n(2n)!tanx=x+x33+2x515+17x7315+62x92835

Complex Exponential Function

eix=cosx+isinx=cis(θ)

cosx=eix+eix2sinx=eixeix2i


Sources

Special Values

Common & Sub-Angle Values

RadianDegreesincostancotseccsc
000101
π247.51222+3122+2+363+226+3+2+2
π121524(31)24(3+1)232+32(31)2(3+1)
π101851410+2542510555+2555010551+5
π822.52222+22212+14224+22
π6301232133232
π536102541+54525525+105551250+1055
π44512121122
3π10541+541025425+105552550+105551
π3603212313223
3π867.52+222222+1214+22422
2π57210+2545145+252510551+5501055
5π127524(3+1)24(31)2+3232(3+1)2(31)
π1901001

Sources

Subsections of Calculus

Indefinite Integration

Basic Formulas

1. Power Rule

(n1)

(f(x))nf(x)dx=(f(x))n+1n+1+C

xndx=xn+1n+1+C

|x|ndx=x|x|nn+1+C

2. Logarithmic Integration

f(x)f(x)dx=ln|f(x)|+C

1xdx=ln|x|+C

3. Trigonometric Functions

sinxdx=cosx+Ccosxdx=sinx+Ctanxdx=ln|cosx|+C=ln|secx|+Ccotxdx=ln|sinx|+C=ln|cscx|+Csecxdx=ln|secx+tanx|+C=ln|tan(π4+x2)|+Ccscxdx=ln|cscxcotx|+C=ln|tanx2|+C

4. Exponential Function

ex(f(x)+f(x))dx=exf(x)+C

axdx=axlna+C

exdx=ex+C

5. Special

dxa2+x2=1atan1xa+Cdxa2x2=12aln|a+xax|+Cdxa2x2=sin1xa+Cdxx2+a2=ln|x+x2+a2|+Cdxx2a2=ln|x+x2a2|+Cdxxx2a2=1asec1xa+Ca2x2dx=x2a2x2+a22sin1xa+Cx2+a2dx=x2x2+a2+a22ln|x+x2+a2|+Cx2a2dx=x2x2a2a22ln|x+x2a2|+C