Ratios and Angles sin 2 θ + cos 2 θ = 1 tan 2 θ − sec 2 θ = 1 csc 2 θ − cot 2 θ = 1
sin x = cos ( 90 ∘ − x ) = 1 csc x cos x = sin ( 90 ∘ − x ) = 1 sec x tan x = cot ( 90 ∘ − x ) = sin x cos x = 1 cot x
A system of rectangular coordinate axes divides a plane into four quadrants. An angle θ lies in one and
only one of these quadrants. The change and sign of the trigonometric ratios in the various quadrants are shown in Fig-1 below.
Sum and Difference Two Angle sin ( A ± B ) = sin A cos B ± cos A sin B cos ( A ± B ) = cos A cos B ∓ sin A sin B
tan ( A ± B ) = tan A ± tan B 1 ∓ tan A tan B cot ( A ± B ) = cot A cot B ∓ 1 cot B ± cot A
sin ( A + B ) sin ( A − B ) = sin 2 A − sin 2 B = cos 2 B − cos 2 A cos ( A + B ) cos ( A − B ) = cos 2 A − sin 2 B = cos 2 B − sin 2 A
Three Angle sin ( A + B + C ) = sin A cos B cos C + cos A sin B cos C + cos A cos B sin C − sin A sin B sin C = cos A cos B cos C ( tan A + tan B + tan C − tan A tan B tan C )
cos ( A + B + C ) = cos A cos B cos C − sin A sin B cos C − sin A cos B sin C − cos A sin B sin C = cos A cos B cos C ( 1 − tan A tan B − tan B tan C − tan C tan A )
tan ( A + B + C ) = tan A + tan B + tan C − tan A tan B tan C 1 − tan A tan B − tan B tan C − tan C tan A cot ( A + B + C ) = cot A + cot B + cot C − cot A cot B cot C 1 − cot A cot B − cot B cot C − cot C cot A
General S 0 = 1 S 1 = ∑ i x i = ∑ i tan θ i S 2 = ∑ i < j x i x j = ∑ i < j tan θ i tan θ j S 3 = ∑ i < j < k x i x j x k = ∑ i < j < k tan θ i tan θ j tan θ k ⋮ ⋮
Then,
tan ( θ 1 + θ 2 + ⋯ + θ n ) = S 1 − S 3 + S 5 − S 7 + ⋯ 1 − S 2 + S 4 − S 6 + ⋯ sec ( θ 1 + θ 2 + ⋯ + θ n ) = sec θ 1 sec θ 2 ⋯ sec θ n S 0 − S 2 + S 4 − ⋯ csc ( θ 1 + θ 2 + ⋯ + θ n ) = sec θ 1 sec θ 2 ⋯ sec θ n S 1 − S 3 + S 5 − ⋯
cos 2 r θ ⋅ cos 2 r + 1 θ ⋅ cos 2 r + 2 θ ⋯ cos 2 n θ = sin 2 n + 1 θ 2 n − r + 1 sin 2 r θ
sin ( α ) + sin ( α + β ) + sin ( α + 2 β ) + ⋯ + sin ( α + n β ) = sin ( ( n + 1 ) β 2 ) sin ( β 2 ) sin ( α + n β 2 ) cos ( α ) + cos ( α + β ) + cos ( α + 2 β ) + ⋯ + cos ( α + n β ) = sin ( ( n + 1 ) β 2 ) sin ( β 2 ) cos ( α + n β 2 )
1 + 2 cos θ + 2 cos ( 2 θ ) + 2 cos ( 3 θ ) + ⋯ + 2 cos ( n θ ) = sin ( ( n + 1 2 ) θ ) sin ( θ 2 )
Generally not true! only for common values of ‘θ ’. USE WITH CAUTION
sin θ 1 ± sin θ 2 + sin θ 3 + ⋯ + sin θ n cos θ 1 ± cos θ 2 + cos θ 3 + ⋯ + cos θ n = tan θ 1 ± θ 2 + θ 3 + ⋯ + θ n n
Product to Sum 2 sin A cos B = sin ( A + B ) + sin ( A − B ) 2 cos A sin B = sin ( A + B ) − sin ( A − B ) 2 cos A cos B = cos ( A + B ) + cos ( A − B ) 2 sin A sin B = cos ( A − B ) − cos ( A + B )
Sum to Product sin C + sin D = 2 sin C + D 2 cos C − D 2 sin C − sin D = 2 cos C + D 2 sin C − D 2 cos C + cos D = 2 cos C + D 2 cos C − D 2 cos C − cos D = − 2 sin C + D 2 sin C − D 2
Multiple Angle Two/Three Angle sin 2 θ = 2 sin θ cos θ = 2 tan θ 1 + tan 2 θ
cos 2 θ = cos 2 θ − sin 2 θ = 2 cos 2 θ − 1 = 1 − 2 sin 2 θ = 1 − tan 2 θ 1 + tan 2 θ
tan 2 θ = 2 tan θ 1 − tan 2 θ
sin 3 θ = 3 sin θ − 4 sin 3 θ = 4 sin ( 60 ∘ − θ ) sin ( θ ) sin ( 60 ∘ + θ )
cos 3 θ = 4 cos 3 θ − 3 cos θ = 4 cos ( 60 ∘ − θ ) cos ( θ ) cos ( 60 ∘ + θ )
tan 3 θ = 3 tan θ − tan 3 θ 1 − 3 tan 2 θ = tan ( 60 ∘ − θ ) tan ( θ ) tan ( 60 ∘ + θ )
Multi(>3) Angle sin 4 θ = 4 sin θ cos 3 θ − 4 cos θ sin 3 θ cos 4 θ = 8 cos 4 θ − 8 cos 2 θ + 1 tan 4 θ = 4 tan θ − 4 tan 3 θ 1 − 6 tan 2 θ + tan 4 θ sin 5 θ = 16 sin 5 θ − 20 sin 3 θ + 5 sin θ cos 5 θ = 16 cos 5 θ − 20 cos 3 θ + 5 cos θ
Half Angle sin θ 2 = sgn ( sin θ 2 ) 1 − cos θ 2 cos θ 2 = sgn ( cos θ 2 ) 1 + cos θ 2
tan θ 2 = 1 − cos θ sin θ = sin θ 1 + cos θ = csc θ − cot θ = tan θ 1 + sec θ = sgn ( sin θ ) 1 − cos θ 1 + cos θ
Special Cases tan η ± θ 2 = sin η ± sin θ cos η + cos θ
tan ( θ 2 + π 4 ) = sec θ + tan θ 1 − sin θ 1 + sin θ = | 1 − tan θ 2 1 + tan θ 2 |
Power Reduction Sine ( sin n θ ) Cosine ( cos n θ ) Combined ( sin n θ cos m θ ) sin 2 θ = 1 − cos 2 θ 2 cos 2 θ = 1 + cos 2 θ 2 sin 2 θ cos 2 θ = 1 − cos 4 θ 8 sin 3 θ = 3 sin θ − sin 3 θ 4 cos 3 θ = 3 cos θ + cos 3 θ 4 sin 3 θ cos 3 θ = 3 sin 2 θ − sin 6 θ 32 sin 4 θ = 3 − 4 cos 2 θ + cos 4 θ 8 cos 4 θ = 3 + 4 cos 2 θ + cos 4 θ 8 sin 4 θ cos 4 θ = 3 − 4 cos 4 θ + cos 8 θ 128 sin 5 θ = 10 sin θ − 5 sin 3 θ + sin 5 θ 16 cos 5 θ = 10 cos θ + 5 cos 3 θ + cos 5 θ 16 sin 5 θ cos 5 θ = 10 sin 2 θ − 5 sin 6 θ + sin 10 θ 512
Special Cases If A + B + C = 180 ∘ = π , then
sin 2 A + sin 2 B + sin 2 C = 4 sin A sin B sin C sin 2 A + sin 2 B − sin 2 C = 4 cos A cos B sin C cos 2 A + cos 2 B + cos 2 C = − 1 − 4 cos A cos B cos C cos 2 A + cos 2 B − cos 2 C = 1 − 4 sin A sin B cos C sin A + sin B + sin C = 4 cos A 2 cos B 2 cos C 2 sin A + sin B − sin C = 4 sin A 2 sin B 2 cos C 2 cos A + cos B + cos C = 1 + 4 sin A 2 sin B 2 sin C 2 cos A + cos B − cos C = − 1 + 4 cos A 2 cos B 2 sin C 2 sin 2 A + sin 2 B − sin 2 C = 2 sin A sin B cos C cos 2 A + cos 2 B − cos 2 C = 1 − 2 sin A sin B cos C cos 2 A + cos 2 B + cos 2 C = 1 − 2 cos A cos B cos C sin 2 A + sin 2 B + sin 2 C = 2 + 2 cos A cos B cos C tan A + tan B + tan C = tan A tan B tan C cot B cot C + cot C cot A + cot A cos B = 1 tan B 2 tan C 2 + tan C 2 tan A 2 + tan A 2 . tan B 2 = 1 cot A 2 + cot B 2 + cot C 2 = cot A 2 cot B 2 cot C 2
Series Expansion sin x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! cos x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯ = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! tan x = x + x 3 3 + 2 x 5 15 + 17 x 7 315 + 62 x 9 2835 ⋯
Complex Exponential Function e i x = cos x + i sin x = cis ( θ )
cos x = e i x + e − i x 2 sin x = e i x − e − i x 2 i
Sources