Indefinite IntegrationBasic Formulas1. Power Rule(n≠−1)∫(f(x))nf′(x)dx=(f(x))n+1n+1+C∫xndx=xn+1n+1+C∫|x|ndx=x|x|nn+1+C2. Logarithmic Integration∫f′(x)f(x)dx=ln|f(x)|+C∫1xdx=ln|x|+C3. Trigonometric Functions∫sinxdx=−cosx+C∫cosxdx=sinx+C∫tanxdx=−ln|cosx|+C=ln|secx|+C∫cotxdx=ln|sinx|+C=−ln|cscx|+C∫secxdx=ln|secx+tanx|+C=ln|tan(π4+x2)|+C∫cscxdx=ln|cscx−cotx|+C=ln|tanx2|+C4. Exponential Function∫ex(f(x)+f′(x))dx=exf(x)+C∫axdx=axlna+C∫exdx=ex+C5. Special∫dxa2+x2=1atan−1xa+C∫dxa2−x2=12aln|a+xa−x|+C∫dxa2−x2=sin−1xa+C∫dxx2+a2=ln|x+x2+a2|+C∫dxx2−a2=ln|x+x2−a2|+C∫dxxx2−a2=1asec−1xa+C∫a2−x2dx=x2a2−x2+a22sin−1xa+C∫x2+a2dx=x2x2+a2+a22ln|x+x2+a2|+C∫x2−a2dx=x2x2−a2−a22ln|x+x2−a2|+C