Subsections of Calculus

Indefinite Integration

Basic Formulas

1. Power Rule

(n1)

(f(x))nf(x)dx=(f(x))n+1n+1+C

xndx=xn+1n+1+C

|x|ndx=x|x|nn+1+C

2. Logarithmic Integration

f(x)f(x)dx=ln|f(x)|+C

1xdx=ln|x|+C

3. Trigonometric Functions

sinxdx=cosx+Ccosxdx=sinx+Ctanxdx=ln|cosx|+C=ln|secx|+Ccotxdx=ln|sinx|+C=ln|cscx|+Csecxdx=ln|secx+tanx|+C=ln|tan(π4+x2)|+Ccscxdx=ln|cscxcotx|+C=ln|tanx2|+C

4. Exponential Function

ex(f(x)+f(x))dx=exf(x)+C

axdx=axlna+C

exdx=ex+C

5. Special

dxa2+x2=1atan1xa+Cdxa2x2=12aln|a+xax|+Cdxa2x2=sin1xa+Cdxx2+a2=ln|x+x2+a2|+Cdxx2a2=ln|x+x2a2|+Cdxxx2a2=1asec1xa+Ca2x2dx=x2a2x2+a22sin1xa+Cx2+a2dx=x2x2+a2+a22ln|x+x2+a2|+Cx2a2dx=x2x2a2a22ln|x+x2a2|+C