Ank Docs

📚 Welcome to Ank’s Ultimate Study Hub 🚀

Welcome to the mind palace of notes, formulas, hacks, and straight-up wizardry 🎉! Whether you’re battling JEE, wrestling with Class 11 & 12 topics, or diving into some tasty code, you’ve found your spot. Here, everything’s laid out like a cheat sheet 📘 to life: physics, chemistry, math formulas, programming tricks, and the oh-so-sneaky shortcuts that’ll make you wonder why everyone else finds it so hard.

Open(still working on that), free, and overflowing with stuff you’ll actually use – feel free to binge, bookmark, and bless your exams with the power moves stored right here. Study smart, learn faster, and leave ‘em wondering what your secret is! 💡🔥

…But I am a pirate !! 🏴‍☠️

Ahoy, matey! Welcome t’ Ank’s Treasure Trove o’ Knowledge! 💎

Ye be sailin’ in the right waters if yer after secrets t’ conquer the high seas o’ exams! From formulas and magic scrolls fer JEE battles to sneaky tricks fer ye everyday curriculum in Class 11 an’ 12, this be the hoard ye seek. Ye’ll find the finest charts fer physics, chemistry, math, an’ even some coded enchantments fer ye clever pirates. 🧠

Plunder freely, me hearty – no coin needed! Binge it all, stow it fer later, an’ give yer mind the compass it needs t’ steer straight fer success. Now, go forth an’ show them landlubbers who rules the waves! ⚓️💀


📃 Table of Contents 📑

Subjects / Categories

Subsections of Ank Docs

Subsections of Mathematics

Subsections of Constants & Approximations

Approximations

Irrational

ExactApproximation
$\sqrt{2}$$1.414 \approx \dfrac{17}{12} \approx \dfrac{99}{70}$
$\sqrt{3}$$1.732 \approx \dfrac{26}{15} \approx \dfrac{31}{18}$
$\pi$$3.14 \approx \dfrac{22}{7} \approx \dfrac{355}{113}$
$\pi^2$$9.87 \approx \dfrac{49}{5} \approx \dfrac{355}{36}$
$\pi^3$$30.0063 \approx 31$
$e$$2.72 \approx \dfrac{19}{7} \approx \dfrac{87}{32} \approx \dfrac{2721}{1001}$
$e^2$$7.39 \approx \dfrac{22}{3}$
$e^3$$20.0855 \approx 20$
$\phi$$\dfrac{1+\sqrt{5}}{2} \approx 1.618 \approx \dfrac{13}{8} \approx \dfrac{21}{13} \approx \dfrac{255}{14}$

Subsections of Trigonometry

Ratios and Angles

Basic Formulae


$\begin{aligned} \sin^2\theta + \cos^2\theta & = 1 \\ \tan^2\theta - \sec^2\theta & = 1 \\ \csc^2\theta - \cot^2\theta & = 1 \end{aligned}$

$\begin{aligned} \sin x & = \cos \left(90^{\circ }-x\right) & = {\dfrac {1}{\csc x}} \\ \cos x & = \sin \left(90^{\circ }-x\right) & = {\dfrac {1}{\sec x}} \\ \tan x & = \cot \left(90^{\circ }-x\right) & = {\dfrac {\sin x}{\cos x}} = {\dfrac {1}{\cot x}} \end{aligned}$


A system of rectangular coordinate axes divides a plane into four quadrants. An angle $\theta$ lies in one and only one of these quadrants.
The change and sign of the trigonometric ratios in the various quadrants are shown in Fig-1 below.

Fig-1


Sum and Difference

Two Angle

$\begin{aligned} \sin(A\pm B) & = \sin A\cos B\pm \cos A\sin B \\[3mu] \cos(A\pm B) & = \cos A\cos B\mp \sin A\sin B \end{aligned}$

$\begin{aligned} \tan\left(A\pm B\right) & = \dfrac{\tan A\pm\tan B}{1\mp\tan A\tan B} \\[10mu] \cot\left(A\pm B\right) & = \dfrac{\cot A\cot B\mp 1}{\cot B\pm \cot A} \end{aligned}$

$\begin{aligned} \sin\left(A+B\right)\sin\left(A-B\right) && = \sin^2A-\sin^2B && = \cos^2B-\cos^2A \\ \cos\left(A+B\right)\cos\left(A-B\right) && = \cos^2A-\sin^2B && = \cos^2B-\sin^2A \end{aligned}$

Three Angle

$\begin{aligned} \sin\left(A+B+C\right) & = \sin A\cos B\cos C+\cos A\sin B\cos C+\cos A\cos B\sin C-\sin A\sin B\sin C \\[3mu] & = \cos A\cos B\cos C\left(\tan A+\tan B+\tan C-\tan A\tan B\tan C\right) \end{aligned}$

$\begin{aligned} \cos\left(A+B+C\right) & = \cos A\cos B\cos C-\sin A\sin B\cos C-\sin A\cos B\sin C-\cos A\sin B\sin C \\[3mu] & = \cos A\cos B\cos C(1-\tan A\tan B-\tan B\tan C-\tan C\tan A) \end{aligned}$

$\begin{aligned} \tan\left(A+B+C\right) & = \dfrac{\tan A+\tan B+\tan C-\tan A\tan B\tan C}{1-\tan A\tan B-\tan B\tan C-\tan C\tan A} \\[12mu] \cot\left(A+B+C\right) & = \dfrac{\cot A+\cot B+\cot C-\cot A\cot B\cot C}{1-\cot A\cot B-\cot B\cot C-\cot C\cot A} \end{aligned}$

General


$\begin{aligned} S_{0} & = 1 \\ S_{1} & = \sum\limits_{i} x_{i} && = \sum\limits_{i} \tan \theta_{i} \\ S_{2} & = \sum\limits_{i < j} x_{i} x_{j} && = \sum\limits_{i < j} \tan \theta_{i} \tan \theta_{j} \\ S_{3} & = \sum\limits_{i < j < k} x_{i} x_{j} x_{k} && = \sum\limits_{i < j < k} \tan \theta_{i} \tan \theta_{j} \tan \theta_{k} \\ & \quad \vdots && \quad \vdots \end{aligned}$

Then,

$\begin{aligned} \tan\left(\theta_1+\theta_2+\cdots+\theta_n\right) & = \dfrac{S_1-S_3+S_5-S_7+\cdots}{1-S_2+S_4-S_6+\cdots} \\[16mu] \sec\left(\theta_1+\theta_2+\cdots+\theta_n\right) & = {\dfrac {\sec \theta_1 \sec \theta_2 \cdots \sec \theta_n}{S_{0}-S_{2}+S_{4}-\cdots }} \\[16mu] \csc\left(\theta_1+\theta_2+\cdots+\theta_n\right) & = {\dfrac {\sec \theta_1 \sec \theta_2 \cdots \sec \theta_n}{S_{1}-S_{3}+S_{5}-\cdots }} \end{aligned}$


$\cos2^r\theta\cdot\cos2^{r+1}\theta\cdot\cos2^{r+2}\theta\cdots\cos2^n\theta= \dfrac{\sin2^{n+1}\theta}{2^{n-r+1}\sin2^r\theta}$

$\begin{aligned} \sin(\alpha)+\sin(\alpha+\beta)+\sin(\alpha+2\beta)+\cdots+\sin\left(\alpha+n\beta\right) & = \dfrac{\sin \left((n+1)\frac{\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)}\sin\left(\alpha+n\frac{\beta}{2}\right) \\[16mu] \cos(\alpha)+\cos(\alpha+\beta)+\cos(\alpha+2\beta)+\cdots+\cos\left(\alpha+n\beta\right) & = \dfrac{\sin\left((n+1)\frac{\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)}\cos\left(\alpha+n\frac{\beta}{2}\right) \end{aligned}$

$1+2\cos \theta+2\cos(2\theta)+2\cos(3\theta)+\cdots +2\cos(n\theta)={\dfrac {\sin \left(\left(n+{\frac {1}{2}}\right)\theta\right)}{\sin \left({\frac {\theta}{2}}\right)}}$

Generally not true! only for common values of ‘$\theta$’. USE WITH CAUTION

$\dfrac{\sin{\theta_1} \pm \sin{\theta_2} + \sin{\theta_3} + \cdots + \sin{\theta_n}}{\cos{\theta_1} \pm \cos{\theta_2} + \cos{\theta_3} + \cdots + \cos{\theta_n}} = \tan{\dfrac{\theta_1 \pm \theta_2 + \theta_3 + \cdots + \theta_n}{n} }$

Product to Sum

$\begin{aligned} 2\sin A\cos B & = \sin\left(A+B\right)+\sin\left(A-B\right) \\[6mu] 2\cos A\sin B & = \sin\left(A+B\right)-\sin\left(A-B\right) \\[6mu] 2\cos A\cos B & = \cos\left(A+B\right)+\cos\left(A-B\right) \\[6mu] 2\sin A\sin B & = \cos\left(A-B\right)-\cos\left(A+B\right) \end{aligned}$

Sum to Product

$\begin{aligned} \sin C+\sin D & = 2\sin\frac{C+D}2\cos\frac{C-D}2 \\[8mu] \sin C-\sin D & = 2\cos\frac{C+D}2\sin\frac{C-D}2 \\[8mu] \cos C+\cos D & = 2\cos\frac{C+D}2\mathrm{cos}\frac{C-D}2 \\[8mu] \cos C-\cos D & = -2\sin\frac{C+D}2\sin\frac{C-D}2 \end{aligned}$

Multiple Angle

Two/Three Angle

$\begin{aligned} \sin2\theta& = 2\sin \theta\cos \theta \\[3mu] & = \dfrac{2\tan \theta}{1+\tan^2\theta} \end{aligned}$

$\begin{aligned} \cos2\theta& = \cos^2\theta-\sin^2\theta \\[3mu] & = 2\cos^2\theta-1 \\[3mu] & = 1-2\sin^2\theta \\[3mu] & = \dfrac{1-\tan^2\theta}{1+\tan^2\theta} \end{aligned}$

$\tan2\theta= \dfrac{2\tan\theta}{1-\tan^2\theta}$

$\begin{aligned} \sin3\theta & = 3\sin \theta-4\sin^3\theta \\[3mu] & = 4\sin\left(60^\circ-\theta\right)\sin (\theta)\sin\left(60^\circ+\theta\right) \end{aligned}$

$\begin{aligned} \cos3\theta & = 4\cos^3\theta-3\cos \theta \\[3mu] & = 4\cos\left(60^\circ-\theta\right)\cos (\theta)\cos\left(60^\circ+\theta\right) \end{aligned}$

$\begin{aligned} \tan3\theta & = \dfrac{3\tan \theta-\tan^3\theta}{1-3\tan^2\theta} \\[3mu] & = \tan\left(60^{\circ}-\theta\right)\tan (\theta)\tan\left(60^{\circ}+\theta\right) \end{aligned}$

Multi(>3) Angle

$\begin{aligned} \sin4\theta & = 4\sin \theta\cos^3 \theta - 4\cos \theta\sin^3 \theta \\ \cos4\theta & = 8\cos^4\theta-8\cos^2\theta+1 \\ \tan4\theta & = \dfrac{4\tan\theta-4\tan^3\theta}{1-6\tan^2\theta+\tan^4\theta} \\ \sin5\theta & = 16\sin^5\theta-20\sin^3\theta+5\sin \theta \\ \cos5\theta & = 16\cos^5\theta-20\cos^3\theta+5\cos \theta \end{aligned}$

Half Angle

$\begin{aligned} \sin {\dfrac {\theta }{2}} & = \operatorname {sgn} \left(\sin {\dfrac {\theta }{2}}\right){\sqrt {\dfrac {1-\cos \theta }{2}}} \\ \cos {\dfrac {\theta }{2}} & = \operatorname {sgn} \left(\cos {\dfrac {\theta }{2}}\right){\sqrt {\dfrac {1+\cos \theta }{2}}} \end{aligned}$

$\begin{aligned} \tan {\dfrac {\theta }{2}} & ={\frac {1-\cos \theta }{\sin \theta }}\\[8mu] & ={\frac {\sin \theta }{1+\cos \theta }}\\[8mu] & =\csc \theta -\cot \theta \\[1mu] & ={\frac {\tan \theta }{1+\sec {\theta }}}\\[1mu] & =\operatorname {sgn}(\sin \theta ){\sqrt {\frac {1-\cos \theta }{1+\cos \theta }}} \end{aligned}$

Special Cases

$\tan {\dfrac {\eta \pm \theta }{2}}={\dfrac {\sin \eta \pm \sin \theta }{\cos \eta +\cos \theta }}$

$\tan \left({\dfrac {\theta }{2}}+{\dfrac {\pi }{4}}\right)=\sec \theta +\tan \theta$
${\sqrt {\dfrac {1-\sin \theta }{1+\sin \theta }}}=\left|{\dfrac {1-\tan {\dfrac {\theta }{2}}}{1+\tan {\dfrac {\theta }{2}}}}\right|$

Power Reduction

Sine $(\sin^n\theta)$Cosine $(\cos^n\theta)$Combined $(\sin^n\theta\cos^m\theta)$
$\sin ^{2}\theta ={\dfrac {1-\cos2\theta}{2}}$$\cos ^{2}\theta ={\dfrac {1+\cos2\theta}{2}}$$\sin ^{2}\theta \cos ^{2}\theta ={\dfrac {1-\cos4\theta}{8}}$
$\sin ^{3}\theta ={\dfrac {3\sin \theta -\sin3\theta}{4}}$$\cos ^{3}\theta ={\dfrac {3\cos \theta +\cos3\theta}{4}}$$\sin ^{3}\theta \cos ^{3}\theta ={\dfrac {3\sin2\theta-\sin6\theta}{32}}$
$\sin ^{4}\theta ={\dfrac {3-4\cos2\theta+\cos4\theta}{8}}$$\cos ^{4}\theta ={\dfrac {3+4\cos2\theta+\cos4\theta}{8}}$$\sin ^{4}\theta \cos ^{4}\theta ={\dfrac {3-4\cos4\theta+\cos8\theta}{128}}$
$\sin ^{5}\theta ={\dfrac {10\sin \theta -5\sin3\theta+\sin5\theta}{16}}$$\cos ^{5}\theta ={\dfrac {10\cos \theta +5\cos3\theta+\cos5\theta}{16}}$$\sin ^{5}\theta \cos ^{5}\theta ={\dfrac {10\sin2\theta-5\sin6\theta+\sin10\theta}{512}}$

Special Cases

If $A+B+C=180^{\circ}=\pi$ , then

$\begin{aligned} \sin2A+\sin2B+\sin2C & = 4\sin A\sin B\sin C \\ \sin2A+\sin2B-\sin2C & = 4\cos A\cos B\sin C \\ \cos2A+\cos2B+\cos2C & = -1-4\cos A\cos B\cos C \\ \cos2A+\cos2B-\cos2C & = 1-4\sin A\sin B\cos C \\[20mu] \sin A+\sin B+\sin C & =4\cos\frac A2\cos\frac B2\cos\frac C2 \\ \sin A+\sin B-\sin C & =4\sin\frac A2\sin\frac B2\cos\frac C2 \\ \cos A+\cos B+\cos C & =1+4\sin\frac A2\sin\frac B2\sin\frac C2 \\ \cos A+\cos B-\cos C & =-1+4\cos\frac A2\cos\frac B2\sin\frac C2 \\[20mu] \sin^2A+\sin^2B-\sin^2C & = 2\sin A\sin B\cos C \\ \cos^2A+\cos^2B-\cos^2C & = 1-2\sin A\sin B\cos C \\ \cos^2A+\cos^2B+\cos^2C & = 1-2\cos A\cos B\cos C \\ \sin^2A+\sin^2B+\sin^2C & = 2+2\cos A\cos B\cos C \\[20mu] \tan A+\tan B+\tan C & = \tan A\tan B\tan C \\ \cot B\cot C+\cot C\cot A+\cot A\cos B & = 1 \\ \tan\frac B2\tan\frac C2+\tan\frac C2\tan\frac A2+\tan\frac A2.\tan\frac B2 & = 1 \\ \cot\frac A2+\cot\frac B2+\cot\frac C2 & = \cot\frac A2\cot\frac B2\cot\frac C2 \end{aligned}$

Series Expansion

$\begin{aligned} \sin x & = x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+\cdots && = \sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{2n+1}}{(2n+1)!} \\ \cos x & = 1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\dfrac{x^6}{6!}+\cdots && = \sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{2n}}{(2n)!} \\ \tan x & = x+\dfrac{x^{3}}{3}+\dfrac{2x^{5}}{15}+\dfrac{17x^{7}}{315}+\dfrac{62x^{9}}{2835}\cdots \end{aligned}$

Complex Exponential Function

$e^{ix}=\cos x+i\sin x=\operatorname {cis}(\theta)$

$\begin{aligned} \cos x & = {\dfrac {e^{ix}+e^{-ix}}{2}} \\ \sin x & = {\dfrac {e^{ix}-e^{-ix}}{2i}} \end{aligned}$


Sources

Special Values

Common & Sub-Angle Values

$\text{Radian}$$\text{Degree}$$\sin$$\cos$$\tan$$\cot$$\sec$$\csc$
$0$$0^{\circ}$$0$$1$$0$$\infty$$1$$\infty$
$\dfrac{\pi}{24}$$7.5^\circ$$\dfrac{1}{2}\sqrt{2 - \sqrt{2 + \sqrt{3}}}$$\dfrac{1}{2}\sqrt{2 + \sqrt{2 + \sqrt{3}}}$$\sqrt{6} - \sqrt{3} + \sqrt{2} - 2$$\sqrt{6} + \sqrt{3} + \sqrt{2} + 2$$-$$-$
$\dfrac{\pi}{12}$$15^\circ$$\dfrac{\sqrt{2}}{4} (\sqrt{3} - 1)$$\dfrac{\sqrt{2}}{4} (\sqrt{3} + 1)$$2 - \sqrt{3}$$2 + \sqrt{3}$$\sqrt{2}(\sqrt{3} - 1)$$\sqrt{2}(\sqrt{3} + 1)$
$\dfrac{\pi}{10}$$18^\circ$$\dfrac{\sqrt{5} - 1}{4}$$\dfrac{\sqrt{10 + 2 \sqrt{5}}}{4}$$\dfrac{\sqrt{25 - 10 \sqrt{5}}}{5}$$\dfrac{\sqrt{5 + 2 \sqrt{5}}}{5}$$\dfrac{\sqrt{50 - 10 \sqrt{5}}}{5}$$1 + \sqrt{5}$
$\dfrac{\pi}{8}$$22.5^\circ$$\dfrac{\sqrt{2 - \sqrt{2}}}{2}$$\dfrac{\sqrt{2 + \sqrt{2}}}{2}$$\sqrt{2} - 1$$\sqrt{2} + 1$$\sqrt{4 - 2 \sqrt{2}}$$\sqrt{4 + 2 \sqrt{2}}$
$\dfrac{\pi}{6}$$30^\circ$$\dfrac{1}{2}$$\dfrac{\sqrt{3}}{2}$$\dfrac{1}{\sqrt{3}}$$\sqrt{3}$$\dfrac{2}{\sqrt{3}}$$2$
$\dfrac{\pi}{5}$$36^\circ$$\dfrac{\sqrt{10 - 2 \sqrt{5}}}{4}$$\dfrac{1 + \sqrt{5}}{4}$$\dfrac{\sqrt{5 - 2 \sqrt{5}}}{5}$$\dfrac{\sqrt{25 + 10 \sqrt{5}}}{5}$$\dfrac{\sqrt{5} - 1}{2}$$\dfrac{\sqrt{50 + 10 \sqrt{5}}}{5}$
$\dfrac{\pi}{4}$$45^\circ$$\dfrac{\sqrt{2}}{2}$$\dfrac{\sqrt{2}}{2}$$1$$1$$\sqrt{2}$$\sqrt{2}$
$\dfrac{3\pi}{10}$$54^\circ$$\dfrac{1 + \sqrt{5}}{4}$$\dfrac{\sqrt{10 - 2 \sqrt{5}}}{4}$$\dfrac{\sqrt{25 + 10 \sqrt{5}}}{5}$$\sqrt{5 - 2 \sqrt{5}}$$\dfrac{\sqrt{50 + 10 \sqrt{5}}}{5}$$\sqrt{5} - 1$
$\dfrac{\pi}{3}$$60^\circ$$\dfrac{\sqrt{3}}{2}$$\dfrac{1}{2}$$\sqrt{3}$$\dfrac{1}{\sqrt{3}}$$2$$\dfrac{2}{\sqrt{3}}$
$\dfrac{3\pi}{8}$$67.5^\circ$$\dfrac{\sqrt{2 + \sqrt{2}}}{2}$$\dfrac{\sqrt{2 - \sqrt{2}}}{2}$$\sqrt{2} + 1$$\sqrt{2} - 1$$4 + 2 \sqrt{2}$$4 - 2 \sqrt{2}$
$\dfrac{2\pi}{5}$$72^\circ$$\dfrac{\sqrt{10 + 2 \sqrt{5}}}{4}$$\dfrac{\sqrt{5} - 1}{4}$$\sqrt{5 + 2 \sqrt{5}}$$\dfrac{\sqrt{25 - 10 \sqrt{5}}}{5}$$1 + \sqrt{5}$$\dfrac{\sqrt{50 - 10 \sqrt{5}}}{5}$
$\dfrac{5\pi}{12}$$75^\circ$$\dfrac{\sqrt{2}}{4} (\sqrt{3} + 1)$$\dfrac{\sqrt{2}}{4} (\sqrt{3} - 1)$$2 + \sqrt{3}$$2 - \sqrt{3}$$\sqrt{2}(\sqrt{3} + 1)$$\sqrt{2}(\sqrt{3} - 1)$
$\dfrac{\pi}{1}$$90^\circ$$1$$0$$\infty$$0$$\infty$$1$

Sources

Subsections of Calculus

Indefinite Integration

Basic Formulas

1. Power Rule

$\quad (n\not ={-1})$

$\displaystyle\int (f(x))^n f'(x) \, dx = \dfrac{(f(x))^{n+1}}{n+1} + C$

$\displaystyle\int x^n \, dx = \dfrac{x^{n+1}}{n+1} + C$

$\displaystyle\int |x|^n \, dx = \dfrac{x |x|^{n}}{n+1} + C$

2. Logarithmic Integration

$\displaystyle\int \dfrac{f'(x)}{f(x)} \, dx = \ln |f(x)| + C$

$\displaystyle\int \dfrac{1}{x} \, dx = \ln |x| + C$

3. Trigonometric Functions

$\begin{aligned} \displaystyle\int \sin x \, dx &&& = -\cos x + C \\ \displaystyle\int \cos x \, dx &&& = \sin x + C \\ \displaystyle\int \tan x \, dx &&& = -\ln |\cos x| + C && = \ln |\sec x| + C \\ \displaystyle\int \cot x \, dx &&& = \ln |\sin x| + C && = -\ln |\csc x| + C \\ \displaystyle\int \sec x \, dx &&& = \ln |\sec x + \tan x| + C && = \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2}\right) \right| + C \\ \displaystyle\int \csc x \, dx &&& = \ln |\csc x - \cot x| + C && = \ln \left| \tan \frac{x}{2} \right| + C \end{aligned}$

4. Exponential Function

$\displaystyle\int a^x \, dx = \dfrac{a^x}{\ln a} + C$

$\displaystyle\int e^x \, dx = e^x + C$

5. Special

$\begin{aligned} \displaystyle\int \dfrac{dx}{a^2 + x^2} & = \dfrac{1}{a} \tan^{-1} \dfrac{x}{a} + C \\[8mu] \displaystyle\int \dfrac{dx}{a^2 - x^2} & = \dfrac{1}{2a} \ln \left| \dfrac{a+x}{a-x} \right| + C \\[25mu] \displaystyle\int \dfrac{dx}{\sqrt{a^2 - x^2}} & = \sin^{-1} \dfrac{x}{a} + C \\[25mu] \displaystyle\int \dfrac{dx}{\sqrt{x^2 + a^2}} & = \ln \left|x + \sqrt{x^2 + a^2}\right| + C \\[8mu] \displaystyle\int \dfrac{dx}{\sqrt{x^2 - a^2}} & = \ln \left| x + \sqrt{x^2 - a^2} \right| + C \\[25mu] \displaystyle\int \dfrac{dx}{x\sqrt{x^2 - a^2}} & = \dfrac{1}{a} \sec^{-1} \dfrac{x}{a} + C \\[25mu] \displaystyle\int \sqrt{a^2 - x^2} \, dx & = \dfrac{x}{2} \sqrt{a^2 - x^2} + \dfrac{a^2}{2} \sin^{-1} \dfrac{x}{a} + C \\[8mu] \displaystyle\int \sqrt{x^2 + a^2} \, dx & = \dfrac{x}{2} \sqrt{x^2 + a^2} + \dfrac{a^2}{2} \ln \left|x + \sqrt{x^2 + a^2}\right| + C \\[8mu] \displaystyle\int \sqrt{x^2 - a^2} \, dx & = \dfrac{x}{2} \sqrt{x^2 - a^2} - \dfrac{a^2}{2} \ln \left|x + \sqrt{x^2 - a^2}\right| + C \\[8mu] \end{aligned}$

Subsections of Physics

Subsections of Constants & Conversions

Constants

Universal / Physical Constants

SymbolQuantityValueUnitDimension
$c$Speed of light in vacuum$3 \times 10^{8}$
$\text{(exact) } 299,792,458$
$\mathrm{m \, s^{-1}}$$\mathrm{LT^{-1}}$
$h$Planck constant$6.626 \times 10^{-34}$$\mathrm{J \, s}$$\mathrm{ML^{2}T^{-1}}$
$hc$Photon Energy constant$1242$$\mathrm{eV \cdot nm}$
$\mathrm{MeV \cdot fm}$
$\mathrm{ML^{2}T^{-1}}$
$\hbar = \dfrac{h}{2\pi}$Reduced Planck constant$1.055 \times 10^{-34}$$\mathrm{J \, s}$$\mathrm{ML^{2}T^{-1}}$
$\mu_0$Vacuum Magnetic permeability$4\pi \times 10^{-7}$$\mathrm{N \, A^{-2}}$$\mathrm{MLT^{-2}I^{-2}}$
$\varepsilon_0 = \dfrac{1}{\mu_0\,c^2}$Vacuum Electric permittivity$8.854 \times 10^{-12}$$\mathrm{F \, m^{-1}}$$\mathrm{M^{-1}L^{-3}T^{4}I^{2}}$
$Z_0 = \dfrac{1}{\varepsilon_0}$Characteristic impedance of vacuum$3.77 \times 10^{2}$$\mathrm{\Omega}$$\mathrm{ML^{2}T^{-3}I^{-2}}$
$G$Newtonian constant of gravitation$6.67 \times 10^{-11}$$\mathrm{m^{3} \, kg^{-1} \, s^{-2}}$$\mathrm{L^{3}M^{-1}T^{-2}}$
$R = \dfrac{PV}{nT}$Molar / Universal Gas constant$8.314 \approx 25/3$
$0.082 \approx 1/12$
$62.36$
$\mathrm{J \, mol^{-1} \, K^{-1}}$
$\mathrm{L \,atm \, mol^{-1} \, K^{-1}}$
$\mathrm{L \,torr \, mol^{-1} \, K^{-1}}$
$\mathrm{ML^{2}T^{-2}K^{-1}}$
$N_A$Avagadro constant$6.022 \times 10^{-23}$$\mathrm{mol^{-1}}$$\mathrm{ML^{2}T^{-2}K^{-1}}$
$N_A\,h$Molar Planck constant$4 \times 10^{-10}$$\mathrm{J \, s \, mol^{-1}}$$\mathrm{ML^{2}T^{-2}K^{-1}}$
$k_B = \dfrac{R}{N_A}$Boltzmann constant$1.38 \times 10^{-23}$$\mathrm{J \, K^{-1}}$$\mathrm{ML^{2}T^{-2}K^{-1}}$
$\sigma$Stefan–Boltzmann constant$5.67 \times 10^{-8}$$\mathrm{W \, m^{-2} \, K^{-4}}$$\mathrm{MT^{-3}K^{-4}}$
$\mathrm{F} = N_A\,e$Faraday constant$9.65 \times 10^{4}$$\mathrm{C \, mol^{-1}}$$\mathrm{MT^{-3}K^{-4}}$
$e^-$Elementary Charge$1.602 \times 10^{-19}$$\mathrm{C}$$\mathrm{TI}$
$m_e$Electron mass$9.11 \times 10^{-31}$$\mathrm{kg}$$\mathrm{M}$
$m_p$Proton mass$1.6726 \times 10^{-27}$$\mathrm{kg}$$\mathrm{M}$
$m_n$Neutron mass$1.6749 \times 10^{-27}$$\mathrm{kg}$$\mathrm{M}$
$m_p / m_e$Proton-to-electron mass ratio$1.84 \times 10^{3}$$-$Dimensionless
$m_{\mu}$Muon mass$1.88 \times 10^{-28}$$\mathrm{kg}$$\mathrm{M}$
$m_{\tau}$Tau mass$3.16 \times 10^{-27}$$\mathrm{kg}$$\mathrm{M}$
$\alpha = \dfrac{e^2}{2\epsilon_0hc}$Fine Structure constant$7.297 \times 10^{-3} \approx \dfrac{1}{137}$$-$Dimensionless
$\alpha^{-1}$Inverse fine structure constant$137.036$$-$Dimensionless
$m_u = \dfrac{m({}^{12}\mathrm{C})}{N_A}$Atomic mass unit$1.66 \times 10^{-27}$$\mathrm{kg}$$\mathrm{M}$
$\mu_B = \dfrac{he}{4\pi m_e}$Bohr Magneton$9.274 \times 10^{-24}$$\mathrm{J \, T^{-1}}$$\mathrm{L^{2}IT^{-2}}$
$R_{\infty} = \dfrac{m_e e^4}{8\epsilon_0 h^3c}$Rydberg constant$1.10 \times 10^{7}$$\mathrm{m^{-1}}$$\mathrm{L^{-1}}$
$R_{\infty}\,hc$Rydberg Unit of Energy$2.18 \times 10^{-18}$
$13.6$
$\mathrm{J}$
$\mathrm{eV}$
$\mathrm{L^{-1}}$
$a_0 = \dfrac{h\epsilon_0}{\pi e^2 m_e}$Bohr radius$5.29 \times 10^{-11}$$\mathrm{m}$$\mathrm{L}$
$b$Wien wavelength displacement constant$2.90 \times 10^{-3}$$\mathrm{m \, K}$$\mathrm{LK}$
$b^\prime$Wien frequency displacement law constant$5.88 \times 10^{10}$$\mathrm{Hz \, K^{-1}}$$\mathrm{T^{-1}K^{-1}}$
$b_{\text{entropy}}$Wien entropy displacement law constant$3.00 \times 10^{-3}$$\mathrm{m \, K}$$\mathrm{LK}$
$r_e$Classical electron radius$2.82 \times 10^{-15}$$\mathrm{m}$$\mathrm{L}$
$E_{\text{ion}}$Ionization Energy of hydrogen$2.18 \times 10^{-18}$$\mathrm{J}$$\mathrm{ML^{2}T^{-2}}$

Derived / Composite Constants

SymbolQuantityValueUnitDimension
$V_{\text{molar}} = \dfrac{RT}{P}$Molar Volume of Ideal Gas at:$\text{See Below}$$-$$-$
(normal) $V_{\text{STP}}$$T = 0^{\circ}\mathrm{\,C} = 273.15\mathrm{\,K}\:,\quad P = 101.325\mathrm{\,kPa} = 1\mathrm{\,atm}$$22.4$$\mathrm{L}$$L^{3}$
(new) $V_{\text{STP}}$$T = 0^{\circ}\mathrm{\,C} = 273.15\mathrm{\,K}\:,\quad P = 100\mathrm{\,kPa} = 0.987\mathrm{\,atm}$$22.7$$\mathrm{L}$$L^{3}$
$V_{\text{NTP}}$$T = 20^{\circ}\mathrm{\,C} = 293.15\mathrm{\,K}\:,\quad P = 101.325\mathrm{\,kPa} = 1\mathrm{\,atm}$$24.0$$\mathrm{L}$$L^{3}$
$V_{\text{SATP}}$$T = 25^{\circ}\mathrm{\,C} = 298.15\mathrm{\,K}\:,\quad P = 101.325\mathrm{\,kPa} = 1\mathrm{\,atm}$$24.5$$\mathrm{L}$$L^{3}$

Empirical / Local Constants

SymbolQuantityValueUnitDimension
$g_{\text{earth}}$Earth’s acceleration due to gravity$9.81$$\mathrm{m \, s^{-2}}$$\mathrm{L^{3}M^{-1}T^{-2}}$

Sources


Note: This page includes several unconventional approximations, often tailored for exams where calculators aren’t permitted.

Conversions

Metric Prefixes

PrefixSymbolMeaningPrefixSymbolMeaning
quetta$Q$$10^{30}$quecto$q$$10^{-30}$
ronna$R$$10^{27}$ronto$r$$10^{-27}$
yotta$Y$$10^{24}$yocto$y$$10^{-24}$
zetta$Z$$10^{21}$zepto$z$$10^{-21}$
exa$E$$10^{18}$atto$a$$10^{-18}$
peta$P$$10^{15}$femto$f$$10^{-15}$
tera$T$$10^{12}$pico$p$$10^{-12}$
giga$G$$10^{9}$nano$n$$10^{-9}$
mega$M$$10^{6}$micro$\mu$$10^{-6}$
kilo$k$$10^{3}$milli$m$$10^{-3}$
hecto$h$$10^{2}$centi$c$$10^{-2}$
deka$da$$10^{1}$deci$d$$10^{-1}$
(base unit)-$10^{0}$(base unit)-$10^{0}$

Conversions

Length

$\begin{aligned} 1 \:m &= 39.37( \approx 243/8) \:in &&= 3.28( \approx 105/32) \:ft &&= 1.094( \approx 11/10) \:yd \\ 1 \:in &= 2.54 \:cm &&= 1/12 \:ft \\ 1 \:ft &= 12 \:in &&= 0.3048 \:m \\ 1 \:km &= 0.6214 \:mi &&= 3281 \:ft \\ 1 \:mi &= 5280 \:ft &&= 1.609 \:km \\ 1 \:\text{light-year} &= 9.461 \times 10^{12} \:km \end{aligned}$

Temperature

$\begin{aligned} \text{Kelvin, } & K &&= {}^\circ C + 273.15 \\ \text{Celsius, } & {}^\circ C &&= K - 273.15 &&= \dfrac{5}{9}({}^\circ F - 32) \\ \text{Fahrenheit, } & {}^\circ F &&= \dfrac{9}{5}{}^\circ C + 32 \\ \text{Rankine, } & {}^\circ R &&= {}^\circ F + 459.67&&= \dfrac{5}{9}K \end{aligned}$

Speed

$\begin{aligned} km/h &= \dfrac{5}{18} \:m/s , & m/s &= \dfrac{18}{5} \:km/h \\ mi/h &= 0.447 \:m/s , &ft/s &= 0.305 \:m/s \\ \end{aligned}$

Mass

$\begin{aligned} 1 \:kg &= 2.204 \:lb &&= 35.274 \:oz \\ 1 \:lb &= 0.4536 \:kg &&= 16 \:oz \\ 1 \:oz &= 0.0283 \:kg \\ 1 \:amu &= 1.66 \times 10^{-27} \:kg \end{aligned}$

Force

$\begin{aligned} 1 \:N &= 10^5 \:dyn &&= 0.2248 \:lbf \\ 1 \:dyn &= 10^{-5} \:N \\ 1 \:lbf &= 4.448 \:N \end{aligned}$

Area

$\begin{aligned} 1 \:m^2 &= 10.764 \:ft^2 &&= 1550 \:in^2 \\ 1 \:in^2 &= 6.45 \:cm^2 \\ 1 \:acre &= 4047 \:m^2 &&= 43560 \:ft^2 \\ 1 \:hectare &= 10^4 \:m^2 \\ 1 \:mi^2 &= 2.59 \:km^2 &&= 640 \:acres \end{aligned}$

Volume

$\begin{aligned} 1 \:m^3 &= 10^3 \:L &&= 35.315 \:ft^3 &&= 264.2 \:gal \\ 1 \:cm^3 &= 1 \:mL &&= 0.061 \:in^3 \\ 1 \:L &= 10^3 \:cm^3 &&= 0.264 \:gal \\ 1 \:ft^3 &= 7.48 \:gal &&= 28.317 \:L \\ 1 \:gal &= 3.785 \:L &&= 231 \:in^3 \end{aligned}$

Pressure

$\begin{aligned} 1 \:kPa &= 10^3 \:N/m^2 &&= 10^{-2} \:bar &&= 9.87 \times 10^{-3} \:atm \\ 1 \:atm &= 101.325 \:kPa &&= 1.013 \:bar &&= 760 \:\text{mmHg (Torr)} \\ 1 \:bar &= 10^2 \:kPa &&= 14.5 \:psi \\ 1 \:psi &= 6.895 \:kPa \\ 1 \:\text{Torr} &= 0.133 \:Pa && (\vec{g} = 9.80665 \:m/s^2) \end{aligned}$

Work/Heat

$\begin{aligned} 1 \:J &= 624.15 \times 10^{10} \:MeV &&= 10^7 \:erg \\ 1 \:eV &= 1.602 \times 10^{-19} \:J \\ 1 \:cal &= 4.184 \:J \\ 1 \:Btu &= 1055 \:J \\ 1 \:\text{kWh} &= 3.6 \times 10^6 \:J &&= 3412 \:Btu \end{aligned}$

Power

$\begin{aligned} 1 \:W &= 1 \:J/s &&= 0.7376 \:ft \cdot lbf/s \\ 1 \:hp &= 745.7 \:W \end{aligned}$

Angle

$\begin{aligned} 1^\circ \text{ (degree)} &= \dfrac{\pi}{180} \:\text{rad} &&= 0.01745 \:\text{rad} \\ 1^\circ &= 60'\text{ (minutes)} \\ 1' &= 60''\text{ (seconds)} \\ 1 \:\text{rad} &= \dfrac{180^\circ}{\pi} \: &&= 57.30^\circ \\ 1 \:\text{revolution} &= 360 \:{}^\circ &&= 2 \pi \:\text{rad} \\ 1 \:\text{rev/min (rpm)} &= 0.1047\:\text{rad/s} \end{aligned}$


Sources

Units

Derived Units

QuantityNameSymbolOther UnitsBase Units
Plane AngleRadian$\text{rad}$$\dfrac{\text{m}}{\text{m}}$
Solid AngleSteradian$\text{sr}$$\dfrac{\text{m}^2}{\text{m}^2}$
FrequencyHertz$\text{Hz}$$\dfrac{1}{\text{s}}$
ForceNewton
Dyne
$\text{N}$
$\text{dyne}$
$\dfrac{\text{kg} \cdot \text{m}}{\text{s}^2}$
$\dfrac{\text{g} \cdot \text{cm}}{\text{s}^2}$
Pressure, StressPascal
Barye
$\text{Pa}$
$\text{Ba}$
$\dfrac{\text{N}}{\text{m}^2}$
$\dfrac{\text{dyne}}{\text{cm}^2}$
$\dfrac{\text{kg} \cdot \text{m}}{\text{s}^2}$
Energy, Work, HeatJoule
Erg
$\text{J}$
$\text{erg}$
$\text{N} \cdot \text{m}$
$\text{dyne} \cdot \text{cm}$
$\dfrac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$
$\dfrac{\text{g} \cdot \text{cm}^2}{\text{s}^2}$
Power, Heat FlowWatt$\text{W}$$\dfrac{\text{J}}{\text{s}}$$\dfrac{\text{kg} \cdot \text{m}^2}{\text{s}^3}$
Electric ChargeCoulomb$\text{C}$$\text{A} \cdot \text{s}$
Electric PotentialVolt$\text{V}$$\dfrac{\text{W}}{\text{A}}$$\dfrac{\text{kg} \cdot \text{m}^2}{\text{A} \cdot \text{s}^3}$
CapacitanceFarad$\text{F}$$\dfrac{\text{C}}{\text{V}}$$\dfrac{\text{A}^2 \cdot \text{s}^4}{\text{kg} \cdot \text{m}^2}$
ResistanceOhm$\Omega$$\dfrac{\text{V}}{\text{A}}$$\dfrac{\text{kg} \cdot \text{m}^2}{\text{A}^2 \cdot \text{s}^3}$
ConductanceSiemens$\text{S}$$\dfrac{\text{A}}{\text{V}}$$\dfrac{\text{A}^2 \cdot \text{s}^3}{\text{kg} \cdot \text{m}^2}$
Magnetic FluxWeber$\text{Wb}$$\text{V} \cdot \text{s}$$\dfrac{\text{kg} \cdot \text{m}^2}{\text{A} \cdot \text{s}^2}$
Magnetic Flux DensityTesla$\text{T}$$\dfrac{\text{Wb}}{\text{m}^2}$$\dfrac{\text{kg}}{\text{A} \cdot \text{s}^2}$
InductanceHenry$\text{H}$$\dfrac{\text{Wb}}{\text{A}}$$\dfrac{\text{kg} \cdot \text{m}^2}{\text{A}^2 \cdot \text{s}^2}$
Celsius TemperatureDegree Celsius${}^{\circ} C$$K$
Luminous FluxLumen$\text{lm}$$\text{cd} \cdot \text{sr}$$\dfrac{\text{cd} \cdot \text{m}^2}{\text{m}^2}$
IlluminanceLux$\text{lx}$$\dfrac{\text{lm}}{\text{m}^2}$$\dfrac{\text{cd}}{\text{m}^2}$
ActivityBecquerel$\text{Bq}$$\dfrac{1}{\text{s}}$

Units Named After People

UnitSymbolScientistQuantity
Becquerel$\text{Bq}$Henri BecquerelActivity
Bel*$\text{B}$Alexander Graham BellLevel
Coulomb$\text{C}$Charles-Augustin CoulombElectric Charge
Degree Celsius${}^{\circ} \text{C}$Anders CelsiusCelsius Temperature
Dalton*$\text{Da}$John DaltonMass
Farad$\text{F}$Michael FaradayCapacitance
Gray$\text{Gy}$Louis GrayAbsorbed Dose
Henry$\text{H}$Joseph HenryInductance
Hertz$\text{Hz}$Heinrich HertzFrequency
Joule$\text{J}$James JouleEnergy, Work, Heat
Kelvin$K$William Thomson, Lord KelvinTemperature
Newton$\text{N}$Isaac NewtonForce
Ohm$\Omega$Georg OhmResistance
Pascal$\text{Pa}$Blaise PascalPressure, Stress
Poise$\text{P}$Jean PoiseuilleDynamic Viscosity
Siemens$\text{S}$Werner von SiemensConductance
Stokes$\text{St}$George StokesKinematic Viscosity
Tesla$\text{T}$Nikola TeslaMagnetic Field
Volt$\text{V}$Alessandro VoltaElectric Potential
Watt$\text{W}$James WattPower, Heat Flow
Weber$\text{Wb}$Wilhelm WeberMagnetic Flux

Sources

Subsections of Electromagnetism

Induction

Electromagnetic Induction

Faraday’s Law

  • Whenever the flux of magnetic field through the area bounded by a closed conducting loop changes, and emf in produced in the loop.

  • EMF induced $(\mathcal{E})$:
    $\mathcal{E} = -\dfrac{d\Phi}{dt}$

  • Flux ($\Phi$):
    $\Phi = \int{\vec{B}\cdot \vec{dS}} = BA \cos \theta$

Lenz’s Law

  • The direction of induced current is such theat it opposes the change that has induced it.

Motional EMF

  • EMF in a conductor moving with velocity $v$ in magnetic field $B$:
    $\mathcal{E} = vBl$

Induced Electric Field

  • Induced electric field $E$ around a loop: $\oint E \, dl = -\dfrac{d\Phi}{dt}$

Eddy Current

  • Electromagnetic damping.
  • Circular currents induced in conductors due to changing magnetic flux.
  • $i \propto \left|\dfrac{d\Phi}{dt}\right|$.

Self-Induction

  • $\Phi = Li$

  • Induced EMF $(\mathcal{E})$ in coil due to its own current $I$:
    $\mathcal{E} = -L \dfrac{di}{dt}$

Inductors

Self-Inductance of a Long Solenoid

  • $L = \mu_0\:n^2Al$

  • $n$: Turns per unit length,
    $A$: Cross-sectional area,
    $l$: Length of solenoid.

Growth and Decay of Current in an LR Circuit

  1. Growth:
    $i = i_0 \biggr(1 - e^{-t/\tau} \biggr)$
  2. Decay:
    $i = i_0\: e^{-t/\tau}$
  3. Time constant ($\tau$):
    $\tau = \dfrac{L}{R}$

At $t = \tau$,
Growth: $i = i_0 (1-\dfrac{1}{e}) = 0.63 i_0$
Decay: $i = i_0 \dfrac{1}{e} = 0.37 i_0$

Energy Stored in an Inductor

  • Energy $(U)$: $U = \dfrac{1}{2} L i^2$

Energy Density in a Magnetic Field

  • $B = \mu_0\:ni$

  • $u = \dfrac{B^2}{2 \mu_0}$

Mutual Induction

  • Mutual Inductance $(M)$:
    $M = \dfrac{\mu_0 N_1 N_2 A}{l}$

  • Induced EMF $\mathcal{E}_2$ in $\text{coil}_2$ due to change in current $i_1$ in $\text{coil}_1$:
    $\mathcal{E}_2 = -M \dfrac{di_1}{dt}$