Ank Docs

📚 Welcome to Ank’s Ultimate Study Hub 🚀

Welcome to the mind palace of notes, formulas, hacks, and straight-up wizardry 🎉! Whether you’re battling JEE, wrestling with Class 11 & 12 topics, or diving into some tasty code, you’ve found your spot. Here, everything’s laid out like a cheat sheet 📘 to life: physics, chemistry, math formulas, programming tricks, and the oh-so-sneaky shortcuts that’ll make you wonder why everyone else finds it so hard.

Open ( yes, you can edit these notes yourself! ), free, and overflowing with stuff you’ll actually use – feel free to binge, bookmark, and bless your exams with the power moves stored right here. Study smart, learn faster, and leave ‘em wondering what your secret is! 💡🔥

…But I am a pirate !! 🏴‍☠️

Ahoy, matey! Welcome t’ Ank’s Treasure Trove o’ Knowledge! 💎

Ye be sailin’ in the right waters if yer after secrets t’ conquer the high seas o’ exams! From formulas and magic scrolls fer JEE battles to sneaky tricks fer ye everyday curriculum in Class 11 an’ 12, this be the hoard ye seek. Ye’ll find the finest charts fer physics, chemistry, math, an’ even some coded enchantments fer ye clever pirates. 🧠

Plunder freely an’ carve yer name on it, me hearty – no coin needed! Binge it all, stow it fer later, an’ give yer mind the compass it needs t’ steer straight fer success. Now, go forth an’ show them landlubbers who rules the waves! ⚓️💀


📃 Table of Contents 📑

Subjects / Categories
Nov 3, 2024

Subsections of Ank Docs

Subsections of Mathematics

Subsections of Constants & Approximations

Approximations

Irrational

ExactApproximation
$\sqrt{2}$$1.414 \approx \dfrac{17}{12} \approx \dfrac{99}{70}$
$\sqrt{3}$$1.732 \approx \dfrac{26}{15} \approx \dfrac{31}{18}$
$\pi$$3.14 \approx \dfrac{22}{7} \approx \dfrac{355}{113}$
$\pi^2$$9.87 \approx \dfrac{49}{5} \approx \dfrac{355}{36}$
$\pi^3$$31.0063 \approx 31$
$e$$2.72 \approx \dfrac{19}{7} \approx \dfrac{87}{32} \approx \dfrac{2721}{1001}$
$e^2$$7.39 \approx \dfrac{22}{3}$
$e^3$$20.0855 \approx 20$
$\phi$$\dfrac{1+\sqrt{5}}{2} \approx 1.618 \approx \dfrac{13}{8} \approx \dfrac{21}{13}$

Subsections of Trigonometry

Ratios and Angles

Basic Formulae


$\begin{aligned} \sin^2\theta + \cos^2\theta & = 1 \\ \tan^2\theta - \sec^2\theta & = 1 \\ \csc^2\theta - \cot^2\theta & = 1 \end{aligned}$

$\begin{aligned} \sin x & = \cos \left(90^{\circ }-x\right) & = {\dfrac {1}{\csc x}} \\ \cos x & = \sin \left(90^{\circ }-x\right) & = {\dfrac {1}{\sec x}} \\ \tan x & = \cot \left(90^{\circ }-x\right) & = {\dfrac {\sin x}{\cos x}} = {\dfrac {1}{\cot x}} \end{aligned}$


A system of rectangular coordinate axes divides a plane into four quadrants. An angle $\theta$ lies in one and only one of these quadrants.
The change and sign of the trigonometric ratios in the various quadrants are shown in Fig-1 below.

Fig-1


Sum and Difference

Two Angle

$\begin{aligned} \sin(A\pm B) & = \sin A\cos B\pm \cos A\sin B \\[3mu] \cos(A\pm B) & = \cos A\cos B\mp \sin A\sin B \end{aligned}$

$\begin{aligned} \tan\left(A\pm B\right) & = \dfrac{\tan A\pm\tan B}{1\mp\tan A\tan B} \\[10mu] \cot\left(A\pm B\right) & = \dfrac{\cot A\cot B\mp 1}{\cot B\pm \cot A} \end{aligned}$

$\begin{aligned} \sin\left(A+B\right)\sin\left(A-B\right) && = \sin^2A-\sin^2B && = \cos^2B-\cos^2A \\ \cos\left(A+B\right)\cos\left(A-B\right) && = \cos^2A-\sin^2B && = \cos^2B-\sin^2A \end{aligned}$

Three Angle

$\begin{aligned} \sin\left(A+B+C\right) & = \sin A\cos B\cos C+\cos A\sin B\cos C+\cos A\cos B\sin C-\sin A\sin B\sin C \\[3mu] & = \cos A\cos B\cos C\left(\tan A+\tan B+\tan C-\tan A\tan B\tan C\right) \end{aligned}$

$\begin{aligned} \cos\left(A+B+C\right) & = \cos A\cos B\cos C-\sin A\sin B\cos C-\sin A\cos B\sin C-\cos A\sin B\sin C \\[3mu] & = \cos A\cos B\cos C(1-\tan A\tan B-\tan B\tan C-\tan C\tan A) \end{aligned}$

$\begin{aligned} \tan\left(A+B+C\right) & = \dfrac{\tan A+\tan B+\tan C-\tan A\tan B\tan C}{1-\tan A\tan B-\tan B\tan C-\tan C\tan A} \\[12mu] \cot\left(A+B+C\right) & = \dfrac{\cot A+\cot B+\cot C-\cot A\cot B\cot C}{1-\cot A\cot B-\cot B\cot C-\cot C\cot A} \end{aligned}$

General


$\begin{aligned} S_{0} & = 1 \\ S_{1} & = \sum\limits_{i} x_{i} && = \sum\limits_{i} \tan \theta_{i} \\ S_{2} & = \sum\limits_{i < j} x_{i} x_{j} && = \sum\limits_{i < j} \tan \theta_{i} \tan \theta_{j} \\ S_{3} & = \sum\limits_{i < j < k} x_{i} x_{j} x_{k} && = \sum\limits_{i < j < k} \tan \theta_{i} \tan \theta_{j} \tan \theta_{k} \\ & \quad \vdots && \quad \vdots \end{aligned}$

Then,

$\begin{aligned} \tan\left(\theta_1+\theta_2+\cdots+\theta_n\right) & = \dfrac{S_1-S_3+S_5-S_7+\cdots}{1-S_2+S_4-S_6+\cdots} \\[16mu] \sec\left(\theta_1+\theta_2+\cdots+\theta_n\right) & = {\dfrac {\sec \theta_1 \sec \theta_2 \cdots \sec \theta_n}{S_{0}-S_{2}+S_{4}-\cdots }} \\[16mu] \csc\left(\theta_1+\theta_2+\cdots+\theta_n\right) & = {\dfrac {\sec \theta_1 \sec \theta_2 \cdots \sec \theta_n}{S_{1}-S_{3}+S_{5}-\cdots }} \end{aligned}$


$\cos2^r\theta\cdot\cos2^{r+1}\theta\cdot\cos2^{r+2}\theta\cdots\cos2^n\theta= \dfrac{\sin2^{n+1}\theta}{2^{n-r+1}\sin2^r\theta}$

$\begin{aligned} \sin(\alpha)+\sin(\alpha+\beta)+\sin(\alpha+2\beta)+\cdots+\sin\left(\alpha+n\beta\right) & = \dfrac{\sin \left((n+1)\frac{\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)}\sin\left(\alpha+n\frac{\beta}{2}\right) \\[16mu] \cos(\alpha)+\cos(\alpha+\beta)+\cos(\alpha+2\beta)+\cdots+\cos\left(\alpha+n\beta\right) & = \dfrac{\sin\left((n+1)\frac{\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)}\cos\left(\alpha+n\frac{\beta}{2}\right) \end{aligned}$

$1+2\cos \theta+2\cos(2\theta)+2\cos(3\theta)+\cdots +2\cos(n\theta)={\dfrac {\sin \left(\left(n+{\frac {1}{2}}\right)\theta\right)}{\sin \left({\frac {\theta}{2}}\right)}}$

Generally not true! only for common values of ‘$\theta$’. USE WITH CAUTION

$\dfrac{\sin{\theta_1} \pm \sin{\theta_2} + \sin{\theta_3} + \cdots + \sin{\theta_n}}{\cos{\theta_1} \pm \cos{\theta_2} + \cos{\theta_3} + \cdots + \cos{\theta_n}} = \tan{\dfrac{\theta_1 \pm \theta_2 + \theta_3 + \cdots + \theta_n}{n} }$

Product to Sum

$\begin{aligned} 2\sin A\cos B & = \sin\left(A+B\right)+\sin\left(A-B\right) \\[6mu] 2\cos A\sin B & = \sin\left(A+B\right)-\sin\left(A-B\right) \\[6mu] 2\cos A\cos B & = \cos\left(A+B\right)+\cos\left(A-B\right) \\[6mu] 2\sin A\sin B & = \cos\left(A-B\right)-\cos\left(A+B\right) \end{aligned}$

Sum to Product

$\begin{aligned} \sin C+\sin D & = 2\sin\frac{C+D}2\cos\frac{C-D}2 \\[8mu] \sin C-\sin D & = 2\cos\frac{C+D}2\sin\frac{C-D}2 \\[8mu] \cos C+\cos D & = 2\cos\frac{C+D}2\mathrm{cos}\frac{C-D}2 \\[8mu] \cos C-\cos D & = -2\sin\frac{C+D}2\sin\frac{C-D}2 \end{aligned}$

Multiple Angle

Two/Three Angle

$\begin{aligned} \sin2\theta& = 2\sin \theta\cos \theta \\[3mu] & = \dfrac{2\tan \theta}{1+\tan^2\theta} \end{aligned}$

$\begin{aligned} \cos2\theta& = \cos^2\theta-\sin^2\theta \\[3mu] & = 2\cos^2\theta-1 \\[3mu] & = 1-2\sin^2\theta \\[3mu] & = \dfrac{1-\tan^2\theta}{1+\tan^2\theta} \end{aligned}$

$\tan2\theta= \dfrac{2\tan\theta}{1-\tan^2\theta}$

$\begin{aligned} \sin3\theta & = 3\sin \theta-4\sin^3\theta \\[3mu] & = 4\sin\left(60^\circ-\theta\right)\sin (\theta)\sin\left(60^\circ+\theta\right) \end{aligned}$

$\begin{aligned} \cos3\theta & = 4\cos^3\theta-3\cos \theta \\[3mu] & = 4\cos\left(60^\circ-\theta\right)\cos (\theta)\cos\left(60^\circ+\theta\right) \end{aligned}$

$\begin{aligned} \tan3\theta & = \dfrac{3\tan \theta-\tan^3\theta}{1-3\tan^2\theta} \\[3mu] & = \tan\left(60^{\circ}-\theta\right)\tan (\theta)\tan\left(60^{\circ}+\theta\right) \end{aligned}$

Multi(>3) Angle

$\begin{aligned} \sin4\theta & = 4\sin \theta\cos^3 \theta - 4\cos \theta\sin^3 \theta \\ \cos4\theta & = 8\cos^4\theta-8\cos^2\theta+1 \\ \tan4\theta & = \dfrac{4\tan\theta-4\tan^3\theta}{1-6\tan^2\theta+\tan^4\theta} \\ \sin5\theta & = 16\sin^5\theta-20\sin^3\theta+5\sin \theta \\ \cos5\theta & = 16\cos^5\theta-20\cos^3\theta+5\cos \theta \end{aligned}$

Half Angle

$\begin{aligned} \sin {\dfrac {\theta }{2}} & = \operatorname {sgn} \left(\sin {\dfrac {\theta }{2}}\right){\sqrt {\dfrac {1-\cos \theta }{2}}} \\ \cos {\dfrac {\theta }{2}} & = \operatorname {sgn} \left(\cos {\dfrac {\theta }{2}}\right){\sqrt {\dfrac {1+\cos \theta }{2}}} \end{aligned}$

$\begin{aligned} \tan {\dfrac {\theta }{2}} & ={\frac {1-\cos \theta }{\sin \theta }}\\[8mu] & ={\frac {\sin \theta }{1+\cos \theta }}\\[8mu] & =\csc \theta -\cot \theta \\[1mu] & ={\frac {\tan \theta }{1+\sec {\theta }}}\\[1mu] & =\operatorname {sgn}(\sin \theta ){\sqrt {\frac {1-\cos \theta }{1+\cos \theta }}} \end{aligned}$

Special Cases

$\tan {\dfrac {\eta \pm \theta }{2}}={\dfrac {\sin \eta \pm \sin \theta }{\cos \eta +\cos \theta }}$

$\tan \left({\dfrac {\theta }{2}}+{\dfrac {\pi }{4}}\right)=\sec \theta +\tan \theta$
${\sqrt {\dfrac {1-\sin \theta }{1+\sin \theta }}}=\left|{\dfrac {1-\tan {\dfrac {\theta }{2}}}{1+\tan {\dfrac {\theta }{2}}}}\right|$

Power Reduction

Sine $(\sin^n\theta)$Cosine $(\cos^n\theta)$Combined $(\sin^n\theta\cos^m\theta)$
$\sin ^{2}\theta ={\dfrac {1-\cos2\theta}{2}}$$\cos ^{2}\theta ={\dfrac {1+\cos2\theta}{2}}$$\sin ^{2}\theta \cos ^{2}\theta ={\dfrac {1-\cos4\theta}{8}}$
$\sin ^{3}\theta ={\dfrac {3\sin \theta -\sin3\theta}{4}}$$\cos ^{3}\theta ={\dfrac {3\cos \theta +\cos3\theta}{4}}$$\sin ^{3}\theta \cos ^{3}\theta ={\dfrac {3\sin2\theta-\sin6\theta}{32}}$
$\sin ^{4}\theta ={\dfrac {3-4\cos2\theta+\cos4\theta}{8}}$$\cos ^{4}\theta ={\dfrac {3+4\cos2\theta+\cos4\theta}{8}}$$\sin ^{4}\theta \cos ^{4}\theta ={\dfrac {3-4\cos4\theta+\cos8\theta}{128}}$
$\sin ^{5}\theta ={\dfrac {10\sin \theta -5\sin3\theta+\sin5\theta}{16}}$$\cos ^{5}\theta ={\dfrac {10\cos \theta +5\cos3\theta+\cos5\theta}{16}}$$\sin ^{5}\theta \cos ^{5}\theta ={\dfrac {10\sin2\theta-5\sin6\theta+\sin10\theta}{512}}$

Special Cases

If $A+B+C=180^{\circ}=\pi$ , then

$\begin{aligned} \sin2A+\sin2B+\sin2C & = 4\sin A\sin B\sin C \\ \sin2A+\sin2B-\sin2C & = 4\cos A\cos B\sin C \\ \cos2A+\cos2B+\cos2C & = -1-4\cos A\cos B\cos C \\ \cos2A+\cos2B-\cos2C & = 1-4\sin A\sin B\cos C \\[20mu] \sin A+\sin B+\sin C & =4\cos\frac A2\cos\frac B2\cos\frac C2 \\ \sin A+\sin B-\sin C & =4\sin\frac A2\sin\frac B2\cos\frac C2 \\ \cos A+\cos B+\cos C & =1+4\sin\frac A2\sin\frac B2\sin\frac C2 \\ \cos A+\cos B-\cos C & =-1+4\cos\frac A2\cos\frac B2\sin\frac C2 \\[20mu] \sin^2A+\sin^2B-\sin^2C & = 2\sin A\sin B\cos C \\ \cos^2A+\cos^2B-\cos^2C & = 1-2\sin A\sin B\cos C \\ \cos^2A+\cos^2B+\cos^2C & = 1-2\cos A\cos B\cos C \\ \sin^2A+\sin^2B+\sin^2C & = 2+2\cos A\cos B\cos C \\[20mu] \tan A+\tan B+\tan C & = \tan A\tan B\tan C \\ \cot B\cot C+\cot C\cot A+\cot A\cos B & = 1 \\ \tan\frac B2\tan\frac C2+\tan\frac C2\tan\frac A2+\tan\frac A2.\tan\frac B2 & = 1 \\ \cot\frac A2+\cot\frac B2+\cot\frac C2 & = \cot\frac A2\cot\frac B2\cot\frac C2 \end{aligned}$

Series Expansion

$\begin{aligned} \sin x & = x-\dfrac{x^3}{3!}+\dfrac{x^5}{5!}-\dfrac{x^7}{7!}+\cdots && = \sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{2n+1}}{(2n+1)!} \\ \cos x & = 1-\dfrac{x^2}{2!}+\dfrac{x^4}{4!}-\dfrac{x^6}{6!}+\cdots && = \sum\limits_{n=0}^\infty\dfrac{(-1)^nx^{2n}}{(2n)!} \\ \tan x & = x+\dfrac{x^{3}}{3}+\dfrac{2x^{5}}{15}+\dfrac{17x^{7}}{315}+\dfrac{62x^{9}}{2835}\cdots \end{aligned}$

Complex Exponential Function

$e^{ix}=\cos x+i\sin x=\operatorname {cis}(\theta)$

$\begin{aligned} \cos x & = {\dfrac {e^{ix}+e^{-ix}}{2}} \\ \sin x & = {\dfrac {e^{ix}-e^{-ix}}{2i}} \end{aligned}$


Sources

Special Values

Common & Sub-Angle Values

$\text{Radian}$$\text{Degree}$$\sin$$\cos$$\tan$$\cot$$\sec$$\csc$
$0$$0^{\circ}$$0$$1$$0$$\infty$$1$$\infty$
$\dfrac{\pi}{24}$$7.5^\circ$$\dfrac{1}{2}\sqrt{2 - \sqrt{2 + \sqrt{3}}}$$\dfrac{1}{2}\sqrt{2 + \sqrt{2 + \sqrt{3}}}$$\sqrt{6} - \sqrt{3} + \sqrt{2} - 2$$\sqrt{6} + \sqrt{3} + \sqrt{2} + 2$$-$$-$
$\dfrac{\pi}{12}$$15^\circ$$\dfrac{\sqrt{2}}{4} (\sqrt{3} - 1)$$\dfrac{\sqrt{2}}{4} (\sqrt{3} + 1)$$2 - \sqrt{3}$$2 + \sqrt{3}$$\sqrt{2}(\sqrt{3} - 1)$$\sqrt{2}(\sqrt{3} + 1)$
$\dfrac{\pi}{10}$$18^\circ$$\dfrac{\sqrt{5} - 1}{4}$$\dfrac{\sqrt{10 + 2 \sqrt{5}}}{4}$$\dfrac{\sqrt{25 - 10 \sqrt{5}}}{5}$$\dfrac{\sqrt{5 + 2 \sqrt{5}}}{5}$$\dfrac{\sqrt{50 - 10 \sqrt{5}}}{5}$$1 + \sqrt{5}$
$\dfrac{\pi}{8}$$22.5^\circ$$\dfrac{\sqrt{2 - \sqrt{2}}}{2}$$\dfrac{\sqrt{2 + \sqrt{2}}}{2}$$\sqrt{2} - 1$$\sqrt{2} + 1$$\sqrt{4 - 2 \sqrt{2}}$$\sqrt{4 + 2 \sqrt{2}}$
$\dfrac{\pi}{6}$$30^\circ$$\dfrac{1}{2}$$\dfrac{\sqrt{3}}{2}$$\dfrac{1}{\sqrt{3}}$$\sqrt{3}$$\dfrac{2}{\sqrt{3}}$$2$
$\dfrac{\pi}{5}$$36^\circ$$\dfrac{\sqrt{10 - 2 \sqrt{5}}}{4}$$\dfrac{1 + \sqrt{5}}{4}$$\dfrac{\sqrt{5 - 2 \sqrt{5}}}{5}$$\dfrac{\sqrt{25 + 10 \sqrt{5}}}{5}$$\dfrac{\sqrt{5} - 1}{2}$$\dfrac{\sqrt{50 + 10 \sqrt{5}}}{5}$
$\dfrac{\pi}{4}$$45^\circ$$\dfrac{1}{\sqrt{2}}$$\dfrac{1}{\sqrt{2}}$$1$$1$$\sqrt{2}$$\sqrt{2}$
$\dfrac{3\pi}{10}$$54^\circ$$\dfrac{1 + \sqrt{5}}{4}$$\dfrac{\sqrt{10 - 2 \sqrt{5}}}{4}$$\dfrac{\sqrt{25 + 10 \sqrt{5}}}{5}$$\sqrt{5 - 2 \sqrt{5}}$$\dfrac{\sqrt{50 + 10 \sqrt{5}}}{5}$$\sqrt{5} - 1$
$\dfrac{\pi}{3}$$60^\circ$$\dfrac{\sqrt{3}}{2}$$\dfrac{1}{2}$$\sqrt{3}$$\dfrac{1}{\sqrt{3}}$$2$$\dfrac{2}{\sqrt{3}}$
$\dfrac{3\pi}{8}$$67.5^\circ$$\dfrac{\sqrt{2 + \sqrt{2}}}{2}$$\dfrac{\sqrt{2 - \sqrt{2}}}{2}$$\sqrt{2} + 1$$\sqrt{2} - 1$$4 + 2 \sqrt{2}$$4 - 2 \sqrt{2}$
$\dfrac{2\pi}{5}$$72^\circ$$\dfrac{\sqrt{10 + 2 \sqrt{5}}}{4}$$\dfrac{\sqrt{5} - 1}{4}$$\sqrt{5 + 2 \sqrt{5}}$$\dfrac{\sqrt{25 - 10 \sqrt{5}}}{5}$$1 + \sqrt{5}$$\dfrac{\sqrt{50 - 10 \sqrt{5}}}{5}$
$\dfrac{5\pi}{12}$$75^\circ$$\dfrac{\sqrt{2}}{4} (\sqrt{3} + 1)$$\dfrac{\sqrt{2}}{4} (\sqrt{3} - 1)$$2 + \sqrt{3}$$2 - \sqrt{3}$$\sqrt{2}(\sqrt{3} + 1)$$\sqrt{2}(\sqrt{3} - 1)$
$\dfrac{\pi}{1}$$90^\circ$$1$$0$$\infty$$0$$\infty$$1$

Sources

Subsections of Calculus

Indefinite Integration

Basic Formulas

1. Power Rule

$\quad (n\not ={-1})$

$\displaystyle\int (f(x))^n f'(x) \, dx = \dfrac{(f(x))^{n+1}}{n+1} + C$

$\displaystyle\int x^n \, dx = \dfrac{x^{n+1}}{n+1} + C$

$\displaystyle\int |x|^n \, dx = \dfrac{x |x|^{n}}{n+1} + C$

2. Logarithmic Integration

$\displaystyle\int \dfrac{f'(x)}{f(x)} \, dx = \ln |f(x)| + C$

$\displaystyle\int \dfrac{1}{x} \, dx = \ln |x| + C$

3. Trigonometric Functions

$\begin{aligned} \displaystyle\int \sin x \, dx &&& = -\cos x + C \\ \displaystyle\int \cos x \, dx &&& = \sin x + C \\ \displaystyle\int \tan x \, dx &&& = -\ln |\cos x| + C && = \ln |\sec x| + C \\ \displaystyle\int \cot x \, dx &&& = \ln |\sin x| + C && = -\ln |\csc x| + C \\ \displaystyle\int \sec x \, dx &&& = \ln |\sec x + \tan x| + C && = \ln \left| \tan \left(\frac{\pi}{4} + \frac{x}{2}\right) \right| + C \\ \displaystyle\int \csc x \, dx &&& = \ln |\csc x - \cot x| + C && = \ln \left| \tan \frac{x}{2} \right| + C \end{aligned}$

4. Exponential Function

$\displaystyle\int e^x(f(x)+f'(x)) \, dx = e^x f(x) + C$

$\displaystyle\int a^x \, dx = \dfrac{a^x}{\ln a} + C$

$\displaystyle\int e^x \, dx = e^x + C$

5. Special

$\begin{aligned} \displaystyle\int \dfrac{dx}{a^2 + x^2} & = \dfrac{1}{a} \tan^{-1} \dfrac{x}{a} + C \\[8mu] \displaystyle\int \dfrac{dx}{a^2 - x^2} & = \dfrac{1}{2a} \ln \left| \dfrac{a+x}{a-x} \right| + C \\[25mu] \displaystyle\int \dfrac{dx}{\sqrt{a^2 - x^2}} & = \sin^{-1} \dfrac{x}{a} + C \\[25mu] \displaystyle\int \dfrac{dx}{\sqrt{x^2 + a^2}} & = \ln \left|x + \sqrt{x^2 + a^2}\right| + C \\[8mu] \displaystyle\int \dfrac{dx}{\sqrt{x^2 - a^2}} & = \ln \left| x + \sqrt{x^2 - a^2} \right| + C \\[25mu] \displaystyle\int \dfrac{dx}{x\sqrt{x^2 - a^2}} & = \dfrac{1}{a} \sec^{-1} \dfrac{x}{a} + C \\[25mu] \displaystyle\int \sqrt{a^2 - x^2} \, dx & = \dfrac{x}{2} \sqrt{a^2 - x^2} + \dfrac{a^2}{2} \sin^{-1} \dfrac{x}{a} + C \\[8mu] \displaystyle\int \sqrt{x^2 + a^2} \, dx & = \dfrac{x}{2} \sqrt{x^2 + a^2} + \dfrac{a^2}{2} \ln \left|x + \sqrt{x^2 + a^2}\right| + C \\[8mu] \displaystyle\int \sqrt{x^2 - a^2} \, dx & = \dfrac{x}{2} \sqrt{x^2 - a^2} - \dfrac{a^2}{2} \ln \left|x + \sqrt{x^2 - a^2}\right| + C \\[8mu] \end{aligned}$

Subsections of Physics

Subsections of Constants & Conversions

Constants

Universal / Physical Constants

SymbolQuantityValueUnitDimension
$c$Speed of light in vacuum$3 \times 10^{8}$
$\text{(exact) } 299,792,458$
$\mathrm{m \, s^{-1}}$$\mathrm{LT^{-1}}$
$h$Planck constant$6.626 \times 10^{-34}$$\mathrm{J \, s}$$\mathrm{ML^{2}T^{-1}}$
$hc$Photon Energy constant$1242$$\mathrm{eV \cdot nm}$
$\mathrm{MeV \cdot fm}$
$\mathrm{ML^{2}T^{-1}}$
$\hbar = \dfrac{h}{2\pi}$Reduced Planck constant$1.055 \times 10^{-34}$$\mathrm{J \, s}$$\mathrm{ML^{2}T^{-1}}$
$\mu_0$Vacuum Magnetic permeability$4\pi \times 10^{-7}$$\mathrm{N \, A^{-2}}$$\mathrm{MLT^{-2}I^{-2}}$
$\varepsilon_0 = \dfrac{1}{\mu_0\,c^2}$Vacuum Electric permittivity$8.854 \times 10^{-12}$$\mathrm{F \, m^{-1}}$$\mathrm{M^{-1}L^{-3}T^{4}I^{2}}$
$Z_0 = \dfrac{1}{\varepsilon_0}$Characteristic impedance of vacuum$3.77 \times 10^{2}$$\mathrm{\Omega}$$\mathrm{ML^{2}T^{-3}I^{-2}}$
$G$Newtonian constant of gravitation$6.67 \times 10^{-11}$$\mathrm{m^{3} \, kg^{-1} \, s^{-2}}$$\mathrm{L^{3}M^{-1}T^{-2}}$
$R = \dfrac{PV}{nT}$Molar / Universal Gas constant$8.314 \approx 25/3$
$0.082 \approx 1/12$
$62.36$
$\mathrm{J \, mol^{-1} \, K^{-1}}$
$\mathrm{L \,atm \, mol^{-1} \, K^{-1}}$
$\mathrm{L \,torr \, mol^{-1} \, K^{-1}}$
$\mathrm{ML^{2}T^{-2}K^{-1}}$
$N_A$Avagadro constant$6.022 \times 10^{-23}$$\mathrm{mol^{-1}}$$\mathrm{ML^{2}T^{-2}K^{-1}}$
$N_A\,h$Molar Planck constant$4 \times 10^{-10}$$\mathrm{J \, s \, mol^{-1}}$$\mathrm{ML^{2}T^{-2}K^{-1}}$
$k_B = \dfrac{R}{N_A}$Boltzmann constant$1.38 \times 10^{-23}$$\mathrm{J \, K^{-1}}$$\mathrm{ML^{2}T^{-2}K^{-1}}$
$\sigma$Stefan–Boltzmann constant$5.67 \times 10^{-8}$$\mathrm{W \, m^{-2} \, K^{-4}}$$\mathrm{MT^{-3}K^{-4}}$
$\mathrm{F} = N_A\,e$Faraday constant$9.65 \times 10^{4}$$\mathrm{C \, mol^{-1}}$$\mathrm{MT^{-3}K^{-4}}$
$e^-$Elementary Charge$1.602 \times 10^{-19}$$\mathrm{C}$$\mathrm{TI}$
$m_e$Electron mass$9.11 \times 10^{-31}$$\mathrm{kg}$$\mathrm{M}$
$m_p$Proton mass$1.6726 \times 10^{-27}$$\mathrm{kg}$$\mathrm{M}$
$m_n$Neutron mass$1.6749 \times 10^{-27}$$\mathrm{kg}$$\mathrm{M}$
$m_p / m_e$Proton-to-electron mass ratio$1.84 \times 10^{3}$$-$Dimensionless
$m_{\mu}$Muon mass$1.88 \times 10^{-28}$$\mathrm{kg}$$\mathrm{M}$
$m_{\tau}$Tau mass$3.16 \times 10^{-27}$$\mathrm{kg}$$\mathrm{M}$
$\alpha = \dfrac{e^2}{2\epsilon_0hc}$Fine Structure constant$7.297 \times 10^{-3} \approx \dfrac{1}{137}$$-$Dimensionless
$\alpha^{-1}$Inverse fine structure constant$137.036$$-$Dimensionless
$m_u = \dfrac{m({}^{12}\mathrm{C})}{N_A}$Atomic mass unit$1.66 \times 10^{-27}$$\mathrm{kg}$$\mathrm{M}$
$\mu_B = \dfrac{he}{4\pi m_e}$Bohr Magneton$9.274 \times 10^{-24}$$\mathrm{J \, T^{-1}}$$\mathrm{L^{2}IT^{-2}}$
$R_{\infty} = \dfrac{m_e e^4}{8\epsilon_0 h^3c}$Rydberg constant$1.10 \times 10^{7}$$\mathrm{m^{-1}}$$\mathrm{L^{-1}}$
$R_{\infty}\,hc$Rydberg Unit of Energy$2.18 \times 10^{-18}$
$13.6$
$\mathrm{J}$
$\mathrm{eV}$
$\mathrm{L^{-1}}$
$a_0 = \dfrac{h\epsilon_0}{\pi e^2 m_e}$Bohr radius$5.29 \times 10^{-11}$$\mathrm{m}$$\mathrm{L}$
$b$Wien wavelength displacement constant$2.90 \times 10^{-3}$$\mathrm{m \, K}$$\mathrm{LK}$
$b^\prime$Wien frequency displacement law constant$5.88 \times 10^{10}$$\mathrm{Hz \, K^{-1}}$$\mathrm{T^{-1}K^{-1}}$
$b_{\text{entropy}}$Wien entropy displacement law constant$3.00 \times 10^{-3}$$\mathrm{m \, K}$$\mathrm{LK}$
$r_e$Classical electron radius$2.82 \times 10^{-15}$$\mathrm{m}$$\mathrm{L}$
$E_{\text{ion}}$Ionization Energy of hydrogen$2.18 \times 10^{-18}$$\mathrm{J}$$\mathrm{ML^{2}T^{-2}}$

Derived / Composite Constants

SymbolQuantityValueUnitDimension
$V_{\text{molar}} = \dfrac{RT}{P}$Molar Volume of Ideal Gas at:$\text{See Below}$$-$$-$
(normal) $V_{\text{STP}}$$T = 0^{\circ}\mathrm{\,C} = 273.15\mathrm{\,K}\:,\quad P = 101.325\mathrm{\,kPa} = 1\mathrm{\,atm}$$22.4$$\mathrm{L}$$L^{3}$
(new) $V_{\text{STP}}$$T = 0^{\circ}\mathrm{\,C} = 273.15\mathrm{\,K}\:,\quad P = 100\mathrm{\,kPa} = 0.987\mathrm{\,atm}$$22.7$$\mathrm{L}$$L^{3}$
$V_{\text{NTP}}$$T = 20^{\circ}\mathrm{\,C} = 293.15\mathrm{\,K}\:,\quad P = 101.325\mathrm{\,kPa} = 1\mathrm{\,atm}$$24.0$$\mathrm{L}$$L^{3}$
$V_{\text{SATP}}$$T = 25^{\circ}\mathrm{\,C} = 298.15\mathrm{\,K}\:,\quad P = 101.325\mathrm{\,kPa} = 1\mathrm{\,atm}$$24.5$$\mathrm{L}$$L^{3}$

Empirical / Local Constants

SymbolQuantityValueUnitDimension
$g_{\text{earth}}$Earth’s acceleration due to gravity$9.81$$\mathrm{m \, s^{-2}}$$\mathrm{L^{3}M^{-1}T^{-2}}$

Sources


Note: This page includes several unconventional approximations, often tailored for exams where calculators aren’t permitted.

Conversions

Metric Prefixes

PrefixSymbolMeaningPrefixSymbolMeaning
quetta$Q$$10^{30}$quecto$q$$10^{-30}$
ronna$R$$10^{27}$ronto$r$$10^{-27}$
yotta$Y$$10^{24}$yocto$y$$10^{-24}$
zetta$Z$$10^{21}$zepto$z$$10^{-21}$
exa$E$$10^{18}$atto$a$$10^{-18}$
peta$P$$10^{15}$femto$f$$10^{-15}$
tera$T$$10^{12}$pico$p$$10^{-12}$
giga$G$$10^{9}$nano$n$$10^{-9}$
mega$M$$10^{6}$micro$\mu$$10^{-6}$
kilo$k$$10^{3}$milli$m$$10^{-3}$
hecto$h$$10^{2}$centi$c$$10^{-2}$
deka$da$$10^{1}$deci$d$$10^{-1}$
(base unit)-$10^{0}$(base unit)-$10^{0}$

Conversions

Length

$\begin{aligned} 1 \:m &= 39.37( \approx 243/8) \:in &&= 3.28( \approx 105/32) \:ft &&= 1.094( \approx 11/10) \:yd \\ 1 \:in &= 2.54 \:cm &&= 1/12 \:ft \\ 1 \:ft &= 12 \:in &&= 0.3048 \:m \\ 1 \:km &= 0.6214 \:mi &&= 3281 \:ft \\ 1 \:mi &= 5280 \:ft &&= 1.609 \:km \\ 1 \:\text{light-year} &= 9.461 \times 10^{12} \:km \end{aligned}$

Temperature

$\begin{aligned} \text{Kelvin, } & K &&= {}^\circ C + 273.15 \\ \text{Celsius, } & {}^\circ C &&= K - 273.15 &&= \dfrac{5}{9}({}^\circ F - 32) \\ \text{Fahrenheit, } & {}^\circ F &&= \dfrac{9}{5}{}^\circ C + 32 \\ \text{Rankine, } & {}^\circ R &&= {}^\circ F + 459.67&&= \dfrac{5}{9}K \end{aligned}$

Speed

$\begin{aligned} km/h &= \dfrac{5}{18} \:m/s , & m/s &= \dfrac{18}{5} \:km/h \\ mi/h &= 0.447 \:m/s , &ft/s &= 0.305 \:m/s \\ \end{aligned}$

Mass

$\begin{aligned} 1 \:kg &= 2.204 \:lb &&= 35.274 \:oz \\ 1 \:lb &= 0.4536 \:kg &&= 16 \:oz \\ 1 \:oz &= 0.0283 \:kg \\ 1 \:amu &= 1.66 \times 10^{-27} \:kg \end{aligned}$

Force

$\begin{aligned} 1 \:N &= 10^5 \:dyn &&= 0.2248 \:lbf \\ 1 \:dyn &= 10^{-5} \:N \\ 1 \:lbf &= 4.448 \:N \end{aligned}$

Area

$\begin{aligned} 1 \:m^2 &= 10.764 \:ft^2 &&= 1550 \:in^2 \\ 1 \:in^2 &= 6.45 \:cm^2 \\ 1 \:acre &= 4047 \:m^2 &&= 43560 \:ft^2 \\ 1 \:hectare &= 10^4 \:m^2 \\ 1 \:mi^2 &= 2.59 \:km^2 &&= 640 \:acres \end{aligned}$

Volume

$\begin{aligned} 1 \:m^3 &= 10^3 \:L &&= 35.315 \:ft^3 &&= 264.2 \:gal \\ 1 \:cm^3 &= 1 \:mL &&= 0.061 \:in^3 \\ 1 \:L &= 10^3 \:cm^3 &&= 0.264 \:gal \\ 1 \:ft^3 &= 7.48 \:gal &&= 28.317 \:L \\ 1 \:gal &= 3.785 \:L &&= 231 \:in^3 \end{aligned}$

Pressure

$\begin{aligned} 1 \:kPa &= 10^3 \:N/m^2 &&= 10^{-2} \:bar &&= 9.87 \times 10^{-3} \:atm \\ 1 \:atm &= 101.325 \:kPa &&= 1.013 \:bar &&= 760 \:\text{mmHg (Torr)} \\ 1 \:bar &= 10^2 \:kPa &&= 14.5 \:psi \\ 1 \:psi &= 6.895 \:kPa \\ 1 \:\text{Torr} &= 0.133 \:Pa && (\vec{g} = 9.80665 \:m/s^2) \end{aligned}$

Work/Heat

$\begin{aligned} 1 \:J &= 624.15 \times 10^{10} \:MeV &&= 10^7 \:erg \\ 1 \:eV &= 1.602 \times 10^{-19} \:J \\ 1 \:cal &= 4.184 \:J \\ 1 \:Btu &= 1055 \:J \\ 1 \:\text{kWh} &= 3.6 \times 10^6 \:J &&= 3412 \:Btu \end{aligned}$

Power

$\begin{aligned} 1 \:W &= 1 \:J/s &&= 0.7376 \:ft \cdot lbf/s \\ 1 \:hp &= 745.7 \:W \end{aligned}$

Angle

$\begin{aligned} 1^\circ \text{ (degree)} &= \dfrac{\pi}{180} \:\text{rad} &&= 0.01745 \:\text{rad} \\ 1^\circ &= 60'\text{ (minutes)} \\ 1' &= 60''\text{ (seconds)} \\ 1 \:\text{rad} &= \dfrac{180^\circ}{\pi} \: &&= 57.30^\circ \\ 1 \:\text{revolution} &= 360 \:{}^\circ &&= 2 \pi \:\text{rad} \\ 1 \:\text{rev/min (rpm)} &= 0.1047\:\text{rad/s} \end{aligned}$


Sources

Units

Derived Units

QuantityNameSymbolOther UnitsBase Units
Plane AngleRadian$\text{rad}$$\dfrac{\text{m}}{\text{m}}$
Solid AngleSteradian$\text{sr}$$\dfrac{\text{m}^2}{\text{m}^2}$
FrequencyHertz$\text{Hz}$$\dfrac{1}{\text{s}}$
ForceNewton
Dyne
$\text{N}$
$\text{dyne}$
$\dfrac{\text{kg} \cdot \text{m}}{\text{s}^2}$
$\dfrac{\text{g} \cdot \text{cm}}{\text{s}^2}$
Pressure, StressPascal
Barye
$\text{Pa}$
$\text{Ba}$
$\dfrac{\text{N}}{\text{m}^2}$
$\dfrac{\text{dyne}}{\text{cm}^2}$
$\dfrac{\text{kg}}{\text{m} \cdot \text{s}^2}$
Energy, Work, HeatJoule
Erg
$\text{J}$
$\text{erg}$
$\text{N} \cdot \text{m}$
$\text{dyne} \cdot \text{cm}$
$\dfrac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$
$\dfrac{\text{g} \cdot \text{cm}^2}{\text{s}^2}$
Power, Heat FlowWatt$\text{W}$$\dfrac{\text{J}}{\text{s}}$$\dfrac{\text{kg} \cdot \text{m}^2}{\text{s}^3}$
Electric ChargeCoulomb$\text{C}$$\text{A} \cdot \text{s}$
Electric PotentialVolt$\text{V}$$\dfrac{\text{W}}{\text{A}}$$\dfrac{\text{kg} \cdot \text{m}^2}{\text{A} \cdot \text{s}^3}$
CapacitanceFarad$\text{F}$$\dfrac{\text{C}}{\text{V}}$$\dfrac{\text{A}^2 \cdot \text{s}^4}{\text{kg} \cdot \text{m}^2}$
ResistanceOhm$\Omega$$\dfrac{\text{V}}{\text{A}}$$\dfrac{\text{kg} \cdot \text{m}^2}{\text{A}^2 \cdot \text{s}^3}$
ConductanceSiemens$\text{S}$$\dfrac{\text{A}}{\text{V}}$$\dfrac{\text{A}^2 \cdot \text{s}^3}{\text{kg} \cdot \text{m}^2}$
Magnetic FluxWeber$\text{Wb}$$\text{V} \cdot \text{s}$$\dfrac{\text{kg} \cdot \text{m}^2}{\text{A} \cdot \text{s}^2}$
Magnetic Flux DensityTesla$\text{T}$$\dfrac{\text{Wb}}{\text{m}^2}$$\dfrac{\text{kg}}{\text{A} \cdot \text{s}^2}$
InductanceHenry$\text{H}$$\dfrac{\text{Wb}}{\text{A}}$$\dfrac{\text{kg} \cdot \text{m}^2}{\text{A}^2 \cdot \text{s}^2}$
Celsius TemperatureDegree Celsius${}^{\circ} C$$K$
Luminous FluxLumen$\text{lm}$$\text{cd} \cdot \text{sr}$$\dfrac{\text{cd} \cdot \text{m}^2}{\text{m}^2}$
IlluminanceLux$\text{lx}$$\dfrac{\text{lm}}{\text{m}^2}$$\dfrac{\text{cd}}{\text{m}^2}$
ActivityBecquerel$\text{Bq}$$\dfrac{1}{\text{s}}$

Units Named After People

UnitSymbolScientistQuantity
Becquerel$\text{Bq}$Henri BecquerelActivity
Bel*$\text{B}$Alexander Graham BellLevel
Coulomb$\text{C}$Charles-Augustin CoulombElectric Charge
Degree Celsius${}^{\circ} \text{C}$Anders CelsiusCelsius Temperature
Dalton*$\text{Da}$John DaltonMass
Farad$\text{F}$Michael FaradayCapacitance
Gray$\text{Gy}$Louis GrayAbsorbed Dose
Henry$\text{H}$Joseph HenryInductance
Hertz$\text{Hz}$Heinrich HertzFrequency
Joule$\text{J}$James JouleEnergy, Work, Heat
Kelvin$K$William Thomson, Lord KelvinTemperature
Newton$\text{N}$Isaac NewtonForce
Ohm$\Omega$Georg OhmResistance
Pascal$\text{Pa}$Blaise PascalPressure, Stress
Poise$\text{P}$Jean PoiseuilleDynamic Viscosity
Siemens$\text{S}$Werner von SiemensConductance
Stokes$\text{St}$George StokesKinematic Viscosity
Tesla$\text{T}$Nikola TeslaMagnetic Field
Volt$\text{V}$Alessandro VoltaElectric Potential
Watt$\text{W}$James WattPower, Heat Flow
Weber$\text{Wb}$Wilhelm WeberMagnetic Flux

Sources

Nov 3, 2024

Subsections of Electromagnetism

Induction

Electromagnetic Induction

Faraday’s Law

  • Whenever the flux of magnetic field through the area bounded by a closed conducting loop changes, and emf in produced in the loop.

  • EMF induced $(\mathcal{E})$:
    $\mathcal{E} = -\dfrac{d\Phi}{dt}$

  • Flux ($\Phi$):
    $\Phi = \int{\vec{B}\cdot \vec{dS}} = BA \cos \theta$

Lenz’s Law

  • The direction of induced current is such theat it opposes the change that has induced it.

Motional EMF

  • EMF in a conductor moving with velocity $v$ in magnetic field $B$:
    $\mathcal{E} = vBl$

Induced Electric Field

  • Induced electric field $E$ around a loop: $\oint E \, dl = -\dfrac{d\Phi}{dt}$

Eddy Current

  • Electromagnetic damping.
  • Circular currents induced in conductors due to changing magnetic flux.
  • $i \propto \left|\dfrac{d\Phi}{dt}\right|$.

Self-Induction

  • $\Phi = Li$

  • Induced EMF $(\mathcal{E})$ in coil due to its own current $I$:
    $\mathcal{E} = -L \dfrac{di}{dt}$

Inductors

Self-Inductance of a Long Solenoid

  • $L = \mu_0\:n^2Al$

  • $n$: Turns per unit length,
    $A$: Cross-sectional area,
    $l$: Length of solenoid.

Growth and Decay of Current in an LR Circuit

  1. Growth:
    $i = i_0 \biggr(1 - e^{-t/\tau} \biggr)$
  2. Decay:
    $i = i_0\: e^{-t/\tau}$
  3. Time constant ($\tau$):
    $\tau = \dfrac{L}{R}$

At $t = \tau$,
Growth: $i = i_0 (1-\dfrac{1}{e}) = 0.63 i_0$
Decay: $i = i_0 \dfrac{1}{e} = 0.37 i_0$

Energy Stored in an Inductor

  • Energy $(U)$: $U = \dfrac{1}{2} L i^2$

Energy Density in a Magnetic Field

  • $B = \mu_0\:ni$

  • $u = \dfrac{B^2}{2 \mu_0}$

Mutual Induction

  • Mutual Inductance $(M)$:
    $M = \dfrac{\mu_0 N_1 N_2 A}{l}$

  • Induced EMF $\mathcal{E}_2$ in $\text{coil}_2$ due to change in current $i_1$ in $\text{coil}_1$:
    $\mathcal{E}_2 = -M \dfrac{di_1}{dt}$

Subsections of Chemistry

Subsections of Organic

IUPAC Naming

IUPAC Naming System

Naming organic compounds using the IUPAC system follows four key steps:

  1. Identify the main functional group and assign it the highest priority.
  2. Find the longest carbon chain that includes this group, numbering it to give the lowest possible number to the priority group.
  3. List and number any substituents (branches), arranging them alphabetically in the name.
  4. Specify stereochemistry if applicable (E/Z, R/S, cis/trans, etc.).

The final IUPAC name follows this structure:

# - Stereochemistry - # - Prefix F.G(s). - # - Substituent(s) - Parent Chain - Multiple Bond - Suffix F.G.
ComponentDescriptionExample
StereochemistrySpatial orientation (E/Z, R/S, D/L, +/- etc.)(E)-, (S)-, (-)-, (D)-
Prefix (Functional Groups)Lower priority groups (prefix form)hydroxy-, oxo-, amino-
SubstituentsBranched groups, listed alphabetically2-methyl, 3-ethyl
Parent ChainLongest continuous chain (homologous series)pentane, hexane
Multiple BondsPosition & type of double/triple bonds2-ene, 3-yne
Suffix (Functional Group)Highest ranking group (based on priority order)-ol, -one, -oic acid

Examples of IUPAC naming:

  • (E)-4-Hydroxy-3-methylpent-2-en-1-one
  • (R)-3,4-Dihydroxy-5-methylcyclohex-2-en-1-one
  • (Z)-4-Bromo-3-methylhex-2-en-1-ol
  • (S)-2,5-Diamino-3-hydroxy-4-methylhexanoic acid
  • (E)-5-Ethyl-4-hydroxy-3,6-dimethylhept-2-en-1-one
  • (R,E)-3,5-Dimethoxy-4-methylhex-2-enal
  • (S)-4-Ethyl-2-hydroxy-3,5-dimethylhexanoic acid
  • (E)-2-Bromo-5-ethyl-4-methylhex-2-enamide
  • (Z)-3,6-Dihydroxy-4,8-dimethylundec-2-enoic acid

This method applies to all organic compounds.


Prefix Table (Carbon Chain)

Carbon CountPrefixCondensed Structural FormulaState at Room Temp
1Meth-$\ce{CH4}$Gas
2Eth-$\ce{CH3CH3}$Gas
3Prop-$\ce{CH3CH2CH3}$Gas
4But-$\ce{CH3CH2CH2CH3}$Gas
5Pent-$\ce{CH3CH2CH2CH2CH3}$Liquid
6Hex-$\ce{CH3(CH2)4CH3}$Liquid
7Hept-$\ce{CH3(CH2)5CH3}$Liquid
8Oct-$\ce{CH3(CH2)6CH3}$Liquid
9Non-$\ce{CH3(CH2)7CH3}$Liquid
10Dec-$\ce{CH3(CH2)8CH3}$Liquid
11Undec-$\ce{CH3(CH2)9CH3}$Liquid
12Dodec-$\ce{CH3(CH2)10CH3}$Liquid
13Tridec-$\ce{CH3(CH2)11CH3}$Liquid
14Tetradec-$\ce{CH3(CH2)12CH3}$Liquid
15Pentadec-$\ce{CH3(CH2)13CH3}$Liquid
16Hexadec-$\ce{CH3(CH2)14CH3}$Solid
17Heptadec-$\ce{CH3(CH2)15CH3}$Solid
18Octadec-$\ce{CH3(CH2)16CH3}$Solid
19Nonadec-$\ce{CH3(CH2)17CH3}$Solid
20Icos-$\ce{CH3(CH2)18CH3}$Solid

Suffix Table (Bond Types)

Bond TypeSuffixGeneral FormulaHybridization
Single bond (Alkane)-ane$\ce{C_{n} H_{n+2}}$$sp^3$
Double bond (Alkene)-ene$\ce{C_{n} H_{n}}$$sp^2$
Triple bond (Alkyne)-yne$\ce{C_{n} H_{n-2}}$$sp$

Functional Groups

The below table is in decreasing order of priority.

Functional
Group Name
FormulaPrefix
(If Substituent)
Suffix
(If Principal Group)
General
Formula
Key Notes
Carboxylic Acid$\ce{-COOH}$Carboxy--oic acid$\ce{R-COOH}$Highest priority, always at the end.
Sulfonic Acid$\ce{-SO3H}$Sulfo--sulfonic acid$\ce{R-SO3H}$Strong acid, highly polar.
Ester$\ce{-COO-R}$Alkoxycarbonyl--oate$\ce{R-COO-R'}$Name alkyl group first, then parent chain.
Acid Halide$\ce{-COX}$Halocarbonyl--oyl halide$\ce{R-COX}$Named like carboxylic acids.
Amide$\ce{-CONH2}$Carbamoyl- / Amido--amide$\ce{R-CONH2}$Forms strong hydrogen bonds.
Nitrile$\ce{-CN}$Cyano--nitrile$\ce{R-CN}$Triple bond, high dipole moment.
Aldehyde$\ce{-CHO}$Formyl- / Oxo--al$\ce{R-CHO}$Always at the end of chain, no number needed.
Thioaldehyde$\ce{-CHS}$Thioformyl- / Thioxo--thial$\ce{R-CHS}$Always at the end of chain, no number needed.
Ketone$\ce{-CO-}$Oxo--one$\ce{R-CO-R'}$Must number position in chain.
Thioketone$\ce{-CS-}$Sulfanylidene--thione$\ce{R-CS-R'}$Must number position in chain.
Alcohol$\ce{-OH}$Hydroxy--ol$\ce{R-OH}$Higher priority than alkanes.
Thiol$\ce{-SH}$Mercapto- / Sulfanyl--thiol$\ce{R-SH}$Less polar than alcohols.
Amine$\ce{-NH2}$Amino--amine$\ce{R-NH2}$Basic in nature, named like alcohols.
Imine$\ce{=NH}$Imino--imine$\ce{R=NH}$Basic in nature, named like alcohols.
Ether$\ce{-O-}$Alkoxy-(Uses common names)$\ce{R-O-R'}$Named as alkoxyalkanes.
Alkene$\ce{-C=C-}$Alkenyl--ene$\ce{R-C=C-R'}$Lowest number to double bond.
Alkyne$\ce{-C#C-}$Alkynyl--yne$\ce{R-C#C-R'}$Triple bond takes priority over alkanes.
Alkane$\ce{-C-C-}$Alkyl--ane$\ce{R-C-C-R'}$No functional group, least priority.
Halogen$\ce{-X}$
($\ce{F, Cl, Br, I}$)
Fluoro-, Chloro-,
Bromo-, Iodo-
(Treated as substituent)$\ce{R-X}$Gets lowest number possible.
Nitro$\ce{-NO2}$Nitro-(Treated as substituent)$\ce{R-NO2}$Always gets lowest number possible.

Additional Naming Rules & Notes

  1. Multiple Functional Groups:

    • The highest priority group gets the suffix.

    • All other functional groups are named as prefixes.

    • Example 1:

      • Compound: $\ce{CH3CH(OH)CH2COOH}$
      • IUPAC Name: 3-Hydroxybutanoic acid
      • Priority Order: Carboxyl ($\ce{-COOH}$) > Hydroxyl ($\ce{-OH}$)
    • Example 2:

      • Compound: $\ce{CH3CH(Br)CH(OH)CH3}$
      • IUPAC Name: 2-Bromo-butan-3-ol
      • Priority Order: Hydroxyl ($\ce{-OH}$) > Halo ($\ce{-Br}$)
  2. Numbering of Chains:

    • The longest continuous chain is chosen.
    • The functional group gets the lowest possible number.
  3. Multiple Bonds (Double & Triple):

    • If both double $\ce{C=C}$ and triple $\ce{C#C}$ bonds are present, the double bond is given priority in numbering.
  4. Cyclic Compounds:

    • Prefix: Cyclo-
    • Example: Cyclohexanol → $\ce{C6H11OH}$.

Exceptions & Special Cases

1. Common Names Used

Some compounds have retained their common names as IUPAC-approved names.

Common NameIUPAC NameFormulaCategoryKey Notes
Formic AcidMethanoic Acid$\ce{HCOOH}$Carboxylic AcidSimplest carboxylic acid.
Acetic AcidEthanoic Acid$\ce{CH3COOH}$Carboxylic AcidVinegar’s main component.
Propionic AcidPropanoic Acid$\ce{CH3CH2COOH}$Carboxylic AcidName means “first fat” (Greek).
Butyric AcidButanoic Acid$\ce{CH3CH2CH2COOH}$Carboxylic AcidFound in rancid butter.
AcetonePropanone$\ce{CH3COCH3}$KetoneUsed as a solvent.
BenzaldehydeBenzenecarbaldehyde$\ce{C6H5CHO}$AldehydeAlmond-like smell.
TolueneMethylbenzene$\ce{C6H5CH3}$Aromatic HydrocarbonCommon solvent.
XyleneDimethylbenzene$\ce{C6H4(CH3)2}$Aromatic HydrocarbonExists as ortho, meta, para.
PhenolHydroxybenzene$\ce{C6H5OH}$Alcohol/AromaticAntiseptic, acidic.
AnilineAminobenzene$\ce{C6H5NH2}$Amine/AromaticUsed in dyes.
GlycerolPropane-1,2,3-triol$\ce{C3H8O3}$AlcoholFound in fats and oils.

2. Modified Functional Groups Naming

Some groups have unique suffixes or prefixes in IUPAC.

Functional GroupCommon PrefixIUPAC SuffixExampleFormula
Aldehyde ($\ce{-CHO}$)Formyl- / Oxo--alPropanal$\ce{CH3CH2CHO}$
Ketone ($\ce{-CO-}$)Oxo--oneButanone$\ce{CH3COCH2CH3}$
Amide ($\ce{-CONH2}$)Carbamoyl- / Amido--amideEthanamide$\ce{CH3CONH2}$
Ester ($\ce{-COO-R}$)Alkoxycarbonyl--oateMethyl ethanoate$\ce{CH3COOCH3}$
Nitrile ($\ce{-CN}$)Cyano--nitrilePropanenitrile$\ce{CH3CH2CN}$

3. Aromatic System Naming Exceptions

Some aromatic compounds have special historical names.

Common NameIUPAC NameFormulaKey Notes
TolueneMethylbenzene$\ce{C6H5CH3}$Simplest alkylbenzene.
AnilineAminobenzene$\ce{C6H5NH2}$Aromatic amine.
PhenolHydroxybenzene$\ce{C6H5OH}$More acidic than alcohols.
Benzoic AcidBenzenecarboxylic Acid$\ce{C6H5COOH}$Simple aromatic acid.
StyrenePhenylethene$\ce{C6H5CH=CH2}$Used in plastics.

4. Special Aliphatic Naming Exceptions

Some chains do not follow usual alkane naming.

Common NameIUPAC NameFormulaCategory
Isopropyl AlcoholPropan-2-ol$\ce{CH3CHOHCH3}$Alcohol
AcetyleneEthyne$\ce{C2H2}$Alkyne
EthyleneEthene$\ce{C2H4}$Alkene
Isobutane2-Methylpropane$\ce{CH3CH(CH3)CH3}$Branched Alkane
Isopentane2-Methylbutane$\ce{CH3CH(CH3)CH2CH3}$Branched Alkane
Neopentane2,2-Dimethylpropane$\ce{C(CH3)4}$Highly Branched Alkane

6. Special Amino Acid Naming

Amino acids often do not follow usual amine and acid naming.

Common NameIUPAC NameFormulaKey Notes
Glycine2-Aminoethanoic Acid$\ce{NH2CH2COOH}$Simplest amino acid.
Alanine2-Aminopropanoic Acid$\ce{CH3CH(NH2)COOH}$Nonpolar.
Serine2-Amino-3-hydroxypropanoic Acid$\ce{CH2OHCH(NH2)COOH}$Contains hydroxyl group.

7. Special Oxoacid Naming

Some oxoacids have irregular naming.

Common NameIUPAC NameFormulaCategory
Sulfuric AcidDihydrogen Sulfate$\ce{H2SO4}$Strong Acid
Nitric AcidHydrogen Nitrate$\ce{HNO3}$Strong Acid
Phosphoric AcidTrihydrogen Phosphate$\ce{H3PO4}$Weak Acid

Key Takeaways

  • Some common names are still IUPAC-approved (e.g. acetone, toluene, glycerol).
  • Carboxylic acids and esters retain some historical names.
  • Aromatic compounds often have non-systematic names.
  • Amino acids and oxoacids follow special conventions.

Sources